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Vesicles, the Tricritical-0-State Potts Model, and the Collapse of Branched Polymers
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We relate a cycle model for the collapse of branched polymers without holes (in d =2) to the problem
of self-avoiding rings with an area fugacity, studied in the context of vesicles. This relation together with
arguments which show that the collapse transition of branched polymers (with holes) is described by the
tricritical-zero-state Potts model allows a determination of all critical exponents at this collapse point;
v 2 Q 3 r =2, in agreement with numerical results. We also corn ment on the universality of th is
result.

PACS numbers: 64.60.Ak, 05.70.Jk, 36.20.Ey

Linear polymers consist of monomers with a func-
tionality which is 2. The study of critical properties of
such polymers has seen great progress following the work
of de Gennes [ll. This is especially true in two dimen-
sions where the principle of conformal invariance [2] or
the Coulomb gas method [3] have allowed an exact deter-
mination of many critical properties [4]. An area in

which recently much progress has been made is that of
the collapse of a linear polymer under the inhuence of at-
tractive interactions between the monomers. The critical
exponents at the two-dimensional collapse transition (also
called theta point) are now known exactly [5,6].

In contrast, much less is known about branched poly-
mers (BP's) which are made of monomers with a func-
tionality which is greater than 2. In statistical mechan-
ics, these BP are described by lattice animals. Exact re-
sults for lattice animals are few [7]. There even exists
evidence that lattice animals are not conformally invari-
ant [2]. Besides being models for BP, lattice animals
occur in many physically important situations such as in

the study of vesicles [8,9], equilibrium DLA [10], or (in
dimensions greater than two) in the study of membranes
and surfaces [11]. In the present paper we will study the
collapse of branched polymers. Several models have been
introduced to describe this collapse. These models are
commonly divided into cycle and contact models [12].
There are recent claims that these two models may not be
in the same universality class [13]. In this paper, we will

show that the collapse transition in the cycle models is de-
scribed by a zero-state tricritical Potts model [14], lead-
ing to a full and exact determination of all critical ex-
ponents. At the end of this Letter, we will briefly com-
ment on the universality question.

A (site) lattice animal consists of a connected set of
nearest-neighbor sites on a lattice. Here we will work in
d =2, and, to fix attention, consider the square lattice. If
we think of a site as representing a monomer of a BP in a
dilute solution we may give a weight k,' to such an an-
imal, where s is the number of sites in the animal and k,
is the fugacity for one monomer. In the cycle model of
BP collapse we next introduce an attraction between the
monomers by giving each pair of nearest-neighbor sites in

the animal a weight Xb. The grand canonical partition
function for the animal problem is then defined by

zu, „),) =pc(.,b)),;) t,',
s,b

where C(s, b) is the number of lattice animals with s sites
and b nearest-neighbor pairs (Fig. 1). At fixed ).t, the
partition sum (1) will diverge at a critical value k, (kt, ) of
the site fugacity. When Xb =1 we have the noninteract-
ing site animals but upon increasing Xb the branched po-
lymer will collapse at a critical value Xt*, [we denote
A, ;(Xt*, ) by ),*]. This collapse has been studied numerical-
ly by Monte Carlo methods [I5] and by transfer matrix
techniques [16].

We first consider a subset of lattice animals, namely,
those without internal holes. In the following we will

show that the statistics of these lattice animals can be
mapped onto that of self-avoiding rings with an area
fugacity, which have been studied in the context of vesi-
cles [8,9] and are well understood by now. The proof is

simple. We draw, on the dual lattice, a self-avoiding ring
(SAR) around the lattice animal (Fig. 1). It is now easy
to see that the area A inside the ring equals the number
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FIG. I. A lattice animal of s = IO sites, b = I I bonds (thick
full lines), and t = Ig perimeter bonds (dashed lines) on the
square lattice (dots). Also shown is a self-avoiding ring (thin
full line) on the dual lattice (crosses).
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of sites in the animals, while the number of steps N of the
ring is equal to the number of perimeter bonds (t) of the
animal. This latter number can be immediately related
to s and b by (square lattice) 4s=2b+t C.ombining
these results we get the following equivalences between
animals and rings:

s =2, 6 = (4A —IV )/2 . (2)

We thus arrive at the conclusion that the statistics (I) of
the animals with weight X,Xb is equal to the statistics of
SAR's with weight K p where the step fugacity K and
the area fugacity p are given by

K =kb ', p =, ~b. (3)

4/3
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F'IG. 2. The phase diagram of the vesicle problem. The open
squares are the numerical results of Ref. [91. At the SAR point
(p =1) we have indicated the relevant eigenvalues. Also shown
are horizontal lines of increasing k, (fixed kb) for Xb = I (full
line), kb =Xb (dotted line), and Xb & Xb (dashed line).

The latter problem is that studied in the context of vesi-
cles, and its phase diagram is shown in Fig. 2 [8,9].

Evidently, at p =1, the vesicle problem reduces to that
of the noninteracting SAR which has a critical fugacity
K* (which equals 0.3790523. . . on the square lattice
[17]) and a fractal dimension D which is —', [4]. More
recently, it has been shown that the dimension of the inte-
rior of the ring, Dt, equals 2 [18,19]. When p is de-
creased below 1, the vesicles behave like branched poly-
mers while for p & 1 they are inAated and have DI =2
[8,9]. (For p & I, the critical step fugacity is zero. )

Returning now to the lattice animals without holes
(Fig. 2) we see that in the absence of interactions
(Xb = I ), upon increasing k, to its critical value we move
along the line K=1 until we meet the branched polymer
line. Thus we recover the known fact that these nonin-
teracting lattice animals are the same as deAated vesicles.
Now, increasing X, at fixed kb & 1 we move along lines of
constant K and have branched polymer behavior until at
A, b =K~ we hit the SAR fixed point. Here our BP's

which are the interiors of the rings collapse and have a
fractal dimension D =Dt =2 (v =Dt ' = —,

' ). For
& Xb we reach the inAated vesicle phase where the
branched polymers are compact. In fact when, upon in-
creasing k, (for Xb & ) b ) we cross the line p = 1, the size
of the lattice animal will make a discontinuous jump from
a finite to an infinite value [9], implying that here we
have a true first-order transition, and also implying that
the theta point has all the characteristics of a tricritical
point.

ln this picture, it is clear that the crossover exponent p
at the BP theta point is determined by the SAR thermal
exponent leading to p= —', /2= —', . A final exponent (r)
in which we are interested is of "magnetic" type and ap-
pears in the expression for the number C, () b) of BP of s
sites which is defined as

C, () b) =gC(S, /)). bb

b

This quantity, for large s, goes as

C, (kb ) —[);(kb ) l 's

(4a)

(4b)

which defines the exponent r.
For kb & A, b, we expect r =1, the appropriate value for

noninteracting BP [7]. The value of r can, through the
relations (2) and (3), be determined from a knowledge of
the number of self-avoiding rings of area A. This number
has been determined for K =1 from an exact enumeration
of self-avoiding rings [20] and its value is indeed con-
sistent with the BP value r = 1. Using the exact
enumeration data of Enting and CJuttmann [20], we can
also get a numerical estimation of i at the theta point.
The value we obtain is r =2.0+ 0.1.

To conclude our study of lattice animals without holes
we make some remarks. First, at the theta point, X,

* and
kb obey the equation X,*kp =1. For Xb & Xb, the critical
curve is given by X,' =Xb . Second, we remark that at
their 0 point, these BP already have a compact interior
but a surface which is still fractal (with D =

3 ).
We now return to the more realistic lattice animals

~ith holes. All the above equivalences still hold true if
we draw SAR's around both exterior and interior boun-
daries of the animal. Thus the cycle model of interacting
animals can again be mapped into vesicles with p and K
still given by [3]. Now, however, the vesicles will contain
holes (such objects are also called punctured discs [21]).
The arguments given in Ref. [9] on the phase diagram of
the vesicle problem can immediately be extended to this
case [22]. The critical line has the same qualitative be-
havior as in Fig. 2 [e.g. , K, (p) =0 for p & I, . . . ].
Furthermore, if we denote by N the length of the total
perimeter (i.e., of external boundary plus boundaries of
the holes), then one can show that the average area (A)
scales like N in the debated regime, and like N in the
inflated regime [22]. Thus, for p & I the punctured discs
are still highly ramified objects. Clearly when p 0 the
vesicles with holes behave like noninteracting BP.
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H =J g I;r, (8, ,
—I )+hgr;+M g r;I, .

&ij ) (i,j )
(5)

If we call Zz the partition function of the Potts model
(5), then it is known [23,25, 26] that the function
G =(d lnZ~/dq) (q = I ) is the generating function for the
interacting lattice animals using the following parameter

Furthermore, arguments of fields theoretic type [23]
indicate that holes are irrelevant for noninteracting BP's.
Taking all these results together, there is thus strong evi-
dence that BP's still collapse at p =k,*Xb =1, also in the
presence of holes.

This prediction is indeed in agreement with the numer-
ical data of Ref. [16]. Using the values X,

* =0.0230
+ 0.004 and X* =6.48+ 0.12 from that reference we find

=0.97 ~ 0.05, consistent with the above prediction.
Are the exponent values (v= 2, p= —,

' ) the same for
the BP's with holes? Or, in other words, are holes also ir-
relevant at the theta point? The numerical estimates of
Ref. [14] are /=0. 657 ~0.025 and v=0.5095 ~0.003.
In interpreting these data we must realize that the calcu-
lations of Ref. [16] used strips of width up to 7 only, and
that the estimates of exponents crucially depend on the
precise location of the 9 point. It is therefore our feeling
that the error bars on v are underestimated. (In this
respect it is interesting to note, e.g. , that a similar calcu-
lation for the theta point of linear polymers gave
v=0.55+ 0.01 [24], seemingly excluding the exact value
v= —, [5].) The estimate of p is, however, definitely con-
sistent with our prediction.

Additional evidence comes from a mapping of the in-
teracting animal problem (with holes) onto a Potts lattice
gas. This mapping has been introduced by other authors
[23,25,26] but we will further exploit its consequences us-

ing similarities between the present problem and that of
the Ising clusters, which was recently solved [27]. These
arguments, though nonrigorous, will give evidence that
the 6I point of BP's is described by a tricritical-zero-state
Potts model whose exponents [3] v= 2, p= —', are pre-
cisely those obtained above. We start by considering the
Potts lattice gas [14] in which Potts variables a; =1, . . . ,

(q —1) are coupled to lattice gas variables t; =0, 1. The
reduced Hamiltonian is

values [24] (again take the square lattice):

6 =In~„M = lnkb J (6)

K~s=[lnkb]/4, h =Inkq+ —,
' Ink, . (7)

In Fig. 3(b) we have drawn the expected phase diagram
of the animals as a function of %Is and h. First for
kb =1, we get the critical point of the noninteracting lat-

The phase diagram of (5) has been studied extensively
[14,28]. It is known to contain several fixed points such
as an Ising fixed point (for J=0), a critical-q-state Potts
fixed point, and critical- and tricritical-(q —I )-state
Potts points. Another long-known fact [29] is that for

q =2, J ~ the model (5) describes the properties of Is-
ing clusters, i.e. , of connected sets of nearest-neighbor
sites for which the Ising variable is in the same state (Is-
ing correlated percolation). Recently, using conformal
invariance and renormalization group arguments, the pre-
cise connection between Ising clusters and the fixed points
of (5) for q =2 was clarified [27]. We will use the results
obtained there and an assumption that the renormaliza-
tion group How will not change qualitatively when we
pass from q =2 (Ising clusters) to q = I (lattice animals)
to relate the collapse transition in the cycle model of lat-
tice animals to the zero-state tricritical Potts model.

In Fig. 3(a) we have therefore drawn part of the phase
diagram of (3) for the case q =2 as determined in Ref.
[27]. We will consider clusters of down spins and for
convenience work with Ising parameters (K~s =M/4,
h =6/2+M) instead of lattice gas parameters. There
are, in the plane J=~, three critical regimes. For
K~s (K~q (the Ising critical temperature) the clusters
behave as those of uncorrelated percolation (full line).
For K~s & Kts, h =0, there is a line of first-order (dashed
line) percolative transitions. Precisely at the Ising critical
point there is a tricritical point separating both regimes.
This tricritical point is, under renormalization, attracted
to the tricritical-one-state Potts fixed point located at
Kis=Kts, h =0 and an unknown but finite value of J
[27].

We now return to the lattice animals. As discussed
above, these are again described by (5) for J ~, but
now q =1. Converting (6) to Ising variables we get

15/8

FIG. 3. (a) Part of the phase
diagram of the Hamiltonian (5)
for q =2. Shown is the plane
J =~ and the tricritical fixed
point which attracts the critical
Ising clusters (see text). (b)
The phase diagram of the lattice
animal collapse (see text).

q=l
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tice animals at h =[Ink,'(I)]/2 (0 [because k,'(I) ( I].
Putting on Xg means increasing K~s. At the critical value

the BP's collapse. For kg & kg we have a first-order
transition. Now notice that the form of the critical line

X,'=Lb which we found from the vesicle analogy for
XI, ~ XI*, implies that the 0 point and the line of first-order
transitions are located along the line h =0. We now no-
tice the complete similarity of the plane J=~ for the
cases q =2 and q = l. [In fact, for the punctured disks
there is a symmetry p I/p which interchanges the in-
side and outside of the disk (or vesicle). In the case

q =2, this corresponds to h —h symmetry in the Ising
model which interchanges clusters of down spins and
clusters of up spins. Thus, in both Figs. 3(a) and 3(b)
there is a second line which is not drawn of second-order
transitions. Both lines meet at the 0 point. ] We will

therefore assume that also the renormalization group flow

does not change qualitatively when we go from q =2 to

q =1, and thus that the collapse point of BP's is attracted
to the tricritical-zero-state Potts model.

The exponents of the tricritical Potts model were calcu-
lated by Nienhuis [3] and they lead, for q=0 to v= —,

'

and p= —,', in agreement with what we found in the vesi-

cle picture.
The leading magnetic exponent JH of the model equals

2. This exponent describes the behavior of the correlation
function for the model (5) which for q I can be ex-
pressed in terms of the number of branched polymers
C, (l )t. This allows one to relate the exponents r and yH
with the result [30]

r 2/yH+ I .

In this way we are led to predict r =2. This is indeed in
agreement with the numerical result discussed earlier.

It thus seems that indeed the 0 point of the cycle model
of branched polymers is described by the exponents of the
zero-state tricritical Potts model. As noted in the intro-
duction, another model for the collapse of BP is the con-
tact model. We now briefly comment on the universality
question. The contact model can also be described by the
Hamiltonian (5), but now in the plane 5 =0 [261. Again
using similarities with the case q =2, it seems that the 0
point of contact models cannot be in the domain of at-
traction of the tricritical-zero-state Potts model. The
model (5) also contains a percolation fixed point which is
fully repulsive. One is thus led to a picture in which two
distinct 0 points, one for contact, the other for cycle mod-
els, are separated by the higher-order percolation fixed
point. Details of these reasonings will be published else-
where.

In conclusion then, we have determined the critical ex-
ponents of cycle models of branched polymers at their
collapse transition. In addition to BP s without holes we
could also determine the location of the collapse point in
terms of the critical fugacity of SAR s. This is known ex-
actly on the hexagonal lattice [4] so that for that lattice

the location of the 9 point is at Xt*, =K~ =2+ j2,
~*=(~* ') =(2+iv)
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