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Dynamic Model of Onset and Propagation of Fracture
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A two-dimensional model of steady-state crack propagation, in which the stress acting on the fracture
surface includes a dissipative term, exhibits a dissipation-dependent effective threshold for fracture. The
crack creeps very slowly at external stresses just above the GriSth threshold, and makes an abrupt tran-
sition to propagation at roughly the Rayleigh wave speed at higher stresses. When heating due to dissi-

pation is taken into account, the model may exhibit a maximum in the crack propagation speed as a
function of applied stress.

PACS numbers: 62.20.Mk, 46.30.Nz, 81.40.Np, 91.30.Bi

At least two fundamental issues remain unresolved in

the modern theory of fracture dynamics [I]. One of these
concerns the nature of the Griftith threshold for the onset
of crack propagation; a second has to do with propagation
speeds and the mechanisms by which they may be limit-
ed.

In principle, the Gri%th threshold is the externally ap-
plied stress at which the flow of elastic energy to the tip
of a crack can do just the minimum work necessary for
the creation of new fracture surfaces. Measurements of
this threshold, however, often yield fracture energies that
are appreciably larger than estimates of bare surface en-

ergies. This discrepancy usually is ascribed to the extra
work done by dissipative forces; but dissipative effects are
intrinsically velocity dependent and therefore should play
no role in setting a zero-velocity threshold.

A common assumption among experts in fracture
mechanics is that, once a crack starts moving in an ideal,
defect-free solid, its speed can be limited only by the rate
at which stored elastic energy is transported to the crack
tip. Thus the limiting speed of a crack must be a sound
velocity or, more specifically, the velocity of Rayleigh
waves moving along the free fracture surface. Despite its
fundamental importance, this assumption has not been
tested extensively by experiment. Recent measurements

by Fineberg et al [2] indicate th.at, in at least one plastic
material, the limiting fracture speed is significantly less
than the Rayleigh velocity, and the approach to this lim-

iting speed is accompanied by the onset of a dynamic in-

stabilityy.

Some insight regarding both of these issues can be ob-
tained from the study of a simple but nontrivial model of
steady-crack motion. Consider a two-dimensional elastic
material in the (x,y) plane, and suppose that a mode III
(antiplane) crack moves along the x axis. The displace-
ment of the material, u(x, y, t), obeys a scalar, massive
wave equation of the form

u =c'V'u —co'(u —W) .

Here, c is the wave speed, m is the "mass, " and co h, is an
applied force. We include the mass in (1) as a device
that allows us to consider a finite applied strain without

having to deal explicitly with the outer boundaries of the
system. In effect, our material is tied elastically to a sub-
strate or, within a reasonable approximation, the crack is

moving along the center line of a strip of finite width.
The presence of a small but nonzero to in (1) implies the
existence of a large length scale, say, W=c/to. For ex-
ample, 8' might be the width of the strip or the distance
between the material and the substrate.

By definition, u =0 along the unbroken portion of the x
axis. Far from this axis, or well behind the crack tip
where the cohesive forces vanish and the stress is fully re-
laxed, the displacement u relaxes to A. Thus, the exter-
nally applied strain at infinity, which is the driving force
for crack motion, is e =4/W.

To complete the definition of the model, we must speci-
fy the traction applied to the fracture surface. The cru-
cial assumption is that this traction can be written in the
form

p =a„[uj —
ti

r)u t) u

y
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—0
(2)

The quantity p on the left-hand side of (2) is an elastic
modulus. On the right-hand side, cr, [uj is the cohesive
stress acting between the open crack faces which, for sim-

plicity, we take to be

re, 0 ( u (6,

0, u)6.
where u is the crack-opening displacement u(x, O, t), a~, is

the yield stress, 6 is the range of the cohesive force, and
the nominal fracture energy per unit area of fracture sur-
face 1s (7y6.

The second term on the right-hand side of (2) is a
viscous damping stress acting on the fracture surface. A
viscosity of this form is the simplest way of modeling a
general dissipative mechanism that depends upon the
motion of the system. The two spatial derivatives
preserve reflection and translation symmetries, and the
single time derivative breaks time-reversal symmetry to
produce energy dissipation. Phenomenologically, there is

no reason why such a term should not be present in these
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Here, K =e JH is, apart from a numerical constant
and a factor p, the stress-intensity factor associated with

the external force. Technically, K is a strain-intensity
factor, which is convenient for our purposes because it
contains only geometric information and no constitutive
parameters that might depend on temperature or other
aspects of the state of the system. Apart from the sound

speed e on the left-hand side, all of the system-dependent
information in (4) is contained in the quantity K,fr.

1/12 ' ' 2/3

(5)

One advantage of writing (4) in terms of the K's is that
dependence —or lack thereof —on the macroscopic length
W becomes immediately apparent. For example, (4) is

valid for applied stresses K in the range

1/6 ' ' 1/6
K1«
Kg

(6)
6 p

where KG = (2a~6/p ) ' is the stress-intensity factor at
the GriSth threshold. Thus we see that the upper bound
for validity of (4) is very large for a macroscopic system
in which 8' may be many orders of magnitude larger
than any other length scale. On the other hand, K& and

K,1T are independent of 8' and are determined only by
constitutive parameters of the material.

The most remarkable aspect of (4) is the large ex-
ponent on the right-hand side. If K,g & K~, so that
K =K,z is within the range of validity (6), then v jumps
abruptly from very small values to values near the wave

speed c as K passes through K,f1-. That is, K,& plays the
role of an effective GriSth threshold at which the crack
makes what would look experimentally like a sharp tran-
sition from slow creep to rapid propagation. The crack in

this model does indeed start moving at K =Kg, but this
motion may be so slow that an observer would conclude

equations of motion; thus, for complex systems of the
kind we are considering, we should expect it to occur.
There are many more complicated ways of introducing
dissipation near the crack tip. Realistic dissipative terms
are likely to be nonlinear or, at the very least, g would be
some strain-rate-dependent, nonlocal operator. But sim-

plicity is a great asset for the present purposes.
The velocity [. for steady-state crack propagation in

this model can be obtained by means of Wiener-Hopf
methods that are similar to but more elaborate than those
described in two earlier papers [3,4]. The details of this
calculation, which are interesting in themselves, will be
presented in another publication [5].

By far the most interesting result to emerge from this
analysis is an approximate relationship between ~ and the
externally applied force:

that the threshold is at K,g.
There is a wide range of possibilities for the numerical

value of the ratio K,n/Ko =(9cr~/2p) '~ (cg/p6 ) ' ' . In
general, 6 is a microscopic length of order angstroms.
For a highly ductile material, the viscous length scale
(vg/p) ' and the yield strain a~/p could be large enough
to make this ratio appreciably larger than unity. On the
other hand, for a brittle material with a small yield strain
and small viscous dissipation, this ratio would be small
and the crack would move at almost the wave speed as
soon as K exceeds Kg.

When looked at from a slightly different point of view,
this model provides a mechanism by which a small crack
inside a material under constant applied strain ~ may
remain almost stationary for a long time before nucleat-
ing a propagating rupture. In such a situation —a micro-
crack far from the boundaries of a large system —the
relevant stress-intensity factor is proportional to the
square root of the crack length L rather than the macro-
scopic length 8'. Thus, in a crude but qualitatively
reasonable approximation, we may simply replace K by

JL in (4), and then interpret (4) as a nonlinear equa-
tion for L:

(7)

where I,rr
—(cr~6 /p s ) ' (vg/p) ' is the critical crack

length at which runaway fracture begins. This crack
grows very slowly for initial values of L that are large
enough for the stresses at the crack tips to exceed the
Gri%th threshold but are appreciably smaller than L,p.
As the crack grows, however, the stresses at the tips also
grow, and eventually the crack reaches the effective
threshold at L =L,& where L quickly accelerates to values
of order c, This is the kind of behavior that ordinarily is

associated with slow chemical or microstructural changes
in the properties of materials under stress. It may be in-

teresting to consider whether some such effects might be
purely dynamic in origin.

The transition from slow creep to rapid crack propaga-
tion in this model need not be driven only by changes in

the applied stress. For example, the yield strain a~/p
that appears in K,p is generally a temperature-dependent
quantity; thus it seems easy to imagine situations in

which shifts between slow and fast fracture are caused by
changes in temperature. This would not be the conven-
tional picture of a brittle-to-ductile transition in which
there occurs an abrupt change in some constitutive rela-
tion. Rather, the constitutive parameters may vary
smoothly here, and the abrupt changes may occur in the
dynamic response of the system.

An especially interesting possibility is that the heat
generated by the viscous dissipation at the crack tip is it-
self responsible for controlling whether the crack is creep-
ing or propagating rapidly. To explore this possibility we

need two additional results from the Wiener-Hopf
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analysis. First, the crack-opening displacement near the
tip is

(7y X
u(x) =

6g~
(8)

and, second, the length of the cohesive zone, that is, the
size of the region within which cr„ is nonzero in (3), is

K 3,, ) Ii4

Oy
(9)

Next, as suggested above, let us assume that the dom-
inant temperature dependence in K,g is carried by the
yield strain tT&/p, which appears as the factor in (5) with

the largest exponent. Denote the temperature derivative
of In(cr~/p) by the symbol B. If B is positive, K,s in-

creases with temperature and, according to (4), v/c de-

creases. For present purposes, we assume that we are
dealing only with relatively small changes in temperature
so that we need to keep only the first-order term in a Tay-
lor expansion of In(cr~/p) in powers of AT The corre-.
spondingly small change in K,p, however, is amplified in

(4) because K,tr is raised to the twelfth power. Thus, for
v &(c, (4) becomes

K

Ko

K
exp —8

KT

where Ko is the value of K,g at the ambient temperature
and KT = (3yt)

' /Bp c ' ). lf we take Kr to be ap-
proximately a constant, then we can easily solve (11) for
i /c as a function of K . If KT ~ Ko, the answer is that
v/c initially grows like (K /Ko)' as before, but reaches
a maximum value of 0.1449(KT/Ko) at K =1.4036
x (KoKT) ' . For larger values of K, v/c decreases, but

These results are accurate within the range of applied
stresses defined by (6) and, in those circumstances, (8) is

accurate out to values of x of order I. For simplicity, (9)
is written with the additional assumption that i ((c. It is

easiest at several points in this preliminary analysis to as-
sume that the interesting behavior occurs at low speeds,
but that assumption can be removed in a more thorough
investigation of these phenomena.

The rate at which energy is dissipated on the fracture
surface is tI(8u/t)x) . Let us assume that all of this ener-

gy is converted to heat. To obtain a rough estimate of the
temperature in the cohesive zone, first use (8) and (9) to
compute the average rate at which heat is generated per
unit length of the crack in the region 0 & x & I. Then as-
sume a linear cooling mechanism in which the rate of
heat lost from the crack surface is yAT, where AT is the
incremental (above ambient) temperature and y is a con-
stant. If the crack is moving slowly so that there are no

advective effects, we may compute AT by equating heat
generated to heat lost. The result is

i/2

p (10)
3X 9

the asymptotic behavior predicted by (11) (t /c —K: )
occurs beyond the range of the first-order Taylor approxi-
mation. In contrast, for large values of KT, the crack ac-
celerates to i =—c at K =Ko, and the thermal effect is

inoperative.
Note that if this thermal feedback effect were actually

to occur, it would produce a maximum velocity that is in-

dependent of the size or geometry of the system. In addi-
tion, the decrease in velocity at large applied stress might
be an indication of some sort of dynamic instability. The
analysis leading to (11), however, is far too speculative to
be a firm basis for such predictions. In (8) and (9), we

have ignored the possibility that the crack tip deforms in

response to local heating. We also have considered only
variations in the speed of rectilinear motion and have ig-
nored the possibility that the velocity-limiting instability
might involve oscillation in the direction of crack growth,
as seems to be seen experimentally [2,6]. Thus, the
thermal mechanism outlined here should be understood
as being no more than a suggestion of one kind of in-

teresting behavior that might occur in this class of
dynam ical models.

In conclusion, the model introduced here exhibits a rich
variety of physically interesting behaviors, most of which
remain to be explored in detail at the time this paper is

being written. The most important unanswered question
is whether this kind of model is just a mathematical cu-
riosity, or whether it might be realistic enough to be use-
ful. Phenomena such as the onset or arrest of fracture
generally are discussed in terms of detailed physical
mechanisms such as emission and motion of dislocations,
atomic rearrangements at crack tips, formation of shear
bands, and the like. If such mechanisms could be incor-
porated into a small number of phenomenological param-
eters such as the "viscosity" g, we might gain a powerful
new tool for studying the dynamics of fracture.
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