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The resonant forward scattering of x rays from ®"Fe nuclei is strongly polarization dependent.
The broad-band excitation provided by synchrotron radiation (SR) results in an interesting time-
dependent polarization mixing, which we will discuss. Further we demonstrate that by selecting
only the component of the transmitted radiation which has a 90° rotated plane of polarization, the
nonresonant (nonrotated) transmitted intensity can be substantially reduced. This new technique
will allow full utilization of new powerful SR sources currently under construction.

PACS numbers: 76.80.+y, 07.85.+n, 42.50.Fx

Resonant nuclear scattering of synchrotron radiation
(SR) is slow compared to the scattering by electrons and
therefore it is in principal possible to discriminate the
resonant signal by using a fast detector and measuring
the time evolution of the scattering [1]. It is the unfa-
vorable ratio of delayed resonant signal to prompt back-
ground which makes the experiment so difficult. The SR
experiment described in [2] used a conventional crystal
monochromator together with pure nuclear Bragg reflec-
tions from isotopically enriched perfect crystals to sup-
press the electronic scattering. Reducing the monochro-
mator bandwidth from several eV to 5 meV made it
possible to perform the time analog of a conventional
Mossbauer experiment [3]. Nevertheless, even with high
resolution premonochromators, the ratio of prompt to
delayed signal is still typically 108. Thus, independent of
the source intensity, one is restricted by existing detectors
to delayed intensities of a few counts per second. This sig-
nal level is already achieved at current SR sources. Full
utilization of the next generation of SR sources, already
being commissioned, will be conditional on the solution
of the suppression problem.

In this paper we introduce a new technique for
Mossbauer spectroscopy, in which the simple geometry
of nuclear forward scattering (NFS) is combined with po-
larization sensitive suppression of the prompt electronic
scattering. The central idea is to suppress the nonreso-
nant electronic scattering by placing the sample between
two crossed polarizers. The 14.4 keV transition of 5"Fe
shows a hyperfine splitting with six allowed transitions,
which have different polarization properties [4]. To a very
good approximation, only the resonant part of the trans-
mitted radiation can have its polarization state modified.
This is the basis of the experiment described below. The
demonstration experiment which we describe was per-
formed on a dipole source at the National Synchrotron
Light Source (NSLS) and therefore involves some com-
promise in the polarization analyzer adopted. The exper-
imental setup is shown in Fig. 1. The first optical element
consisted of a dispersive pair of asymmetric-symmetric Si

channel cut crystals using the (840) reflection which has
a Bragg angle of 45.1°. The first and last diffracting
surfaces were cut at an angle of 39° to the (840) planes,
while the second and third were cut parallel to the planes.
This geometry [5] provides high angular acceptance (1.2
arcsec compared to 0.4 arcsec for the symmetric case),
good energy resolution (9 meV compared to 27 meV),
and an essentially full suppression of the remaining 7
polarization of the incoming SR beam. A calculation of
this suppression using dynamical theory yields a value
of order 10712, but this value should be treated with
caution since it neglects the influence of crystal imper-
fections and of multiple and non-Bragg scattering. The
sample, a 0.475 um thick, highly enriched (95%) ®7Fe
foil, was set nearly parallel (6=17°) to the beam giving
an effective thickness of 1.6 um. In this geometry a mag-
netic field along the surface of the foil in the horizontal
plane provides a large component parallel to the incom-
ing beam. A beryllium single crystal was used as an
analyzer. Its mosaic spread (about 0.1 mrad) determines
the horizontal beam acceptance. The (00.6) Bragg reflec-
tion of beryllium is at 46.01° and provides a significant
suppression of the horizontally polarized component [6].
Since this crystal is slightly mosaic it is difficult to calcu-
late an accurate value for its suppression. The detector
was the same as used in previous experiments (see, e.g.,
[3]). The NSLS storage ring operated in five and single
bunch mode, which provides a time window of about 80
nsec (five bunch mode) [7].
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FIG. 1. Experimental setup.
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Previous experiments were essentially classical Fara-
day effect measurements, using a single photon energy at
any one time and observing a rotation of the plane of po-
larization which depended on the chosen photon energy
and the sample thickness [8,9]. Experiments using SR are
qualitatively different. The broad frequency band of SR
excites all hyperfine split lines coherently and the rota-
tion of the polarization is no longer thickness dependent.
Instead the rotation becomes time dependent with a pre-
cession period depending only on the hyperfine splitting.
For a o-polarized incoming beam this leads to n- and
o-polarization components of the NFS with comparable
intensities. Using crossed linear polarizers the ¢ com-
ponent (prompt electronic and resonant scattering) can
be almost completely suppressed, while the m component
(only resonant scattering) is transmitted.

The theoretical treatment of the transmission of radi-
ation through a Mdssbauer absorber has been discussed
by several authors [10-13]. The optical effects caused
by resonant scattering can be described by considering
a medium with a complex index of refraction expressed
as a frequency-dependent 2 x 2 matrix 7i(w). Since our
polarizers are linear, we choose as a basis the linear po-
larizations 7 and o, which are perpendicular and parallel,
respectively, to the plane of the storage ring.

Consider the solution of the wave equation in a disper-
sive medium. The transmitted electromagnetic field can
be written as

A'(w) = explifi(w)kod]A(w) . (1)

In this expression d represents the effective sample thick-
ness, ko the wave vector in vacuum, and 7i(w) is given
by

Aiw) =1+ A pf(w), 2)

where 27X is the wavelength in vacuum, f(w) is the
frequency-dependent 2 x 2 matrix representing the for-
ward scattering amplitudes f;;(w) for a single nucleus,
and p is the sample density. The subscripts ¢j refer to
the polarization of scattered and incoming photons, re-
spectively. The matrix elements f;;(w) depend on the
orientation of the quantization axis with respect to the
direction k¢ and polarization of the incoming x rays.
They also depend on the nuclear transition amplitudes
which contain the Lamb-Mdssbauer coefficient, isotopic
abundance, conversion coefficient, transition strengths,
and hyperfine splittings. In general, each matrix element
fij(w) depends on all the nuclear transition amplitudes.

After substitution with Eq. (2), Eq. (1) can be factor-
ized into a frequency-independent phase factor and the
expression exp[if(w)d] which represents the transmission
operator. This operator can be evaluated by expressing

(w) in terms of Pauli matrices. Expanding the exponen-
tial and using the algebraic rules of Pauli matrices gives
the 2 x 2 transmission matrix 7'(w) with elements Tij(w).
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It is important to note that in general each element T, (w)
depends on all four matrix elements f;;(w) and therefore
on all the nuclear parameters. Consequently, a measure-
ment which is sensitive to only one of the T};(w) is suffi-
cient to probe all hyperfine levels.

As discussed above, for an arbitrary orientation of the
quantization axis with respect to the polarizer, the wave
incident on the sample is not an eigenpolarization. For
our choice of coordinates this means that 7'(w) is not
diagonal and all elements T;;(w) depend on all nuclear
transition amplitudes. By specific choice of orientation
one may emphasize the role of a subset of the manifold of
transitions, for example the Faraday geometry reported
here. In this case T'(w) is not diagonal and depends pri-
marily on the Am = +1 transitions. The fact that T(w)
is not diagonal implies that polarization mixing occurs.
It is this mixing of polarizations which we study in the
experiment and use to suppress the electronic scatter-
ing. Although our measurements are performed in the
Faraday geometry many other arrangements are possi-
ble, where all transitions contribute [14]. The only re-
quirement is that the sample quantization axis can be
oriented so that the incident polarization is not an eigen-
polarization. We note that a different choice of basis set
or coordinate system may result in a diagonal T'(w). In
that case the matrices describing the polarizer and an-
alyzer must be nondiagonal for polarization mixing to
occur. That is, as stated above, the wave incident on the
sample must not be an eigenpolarization.

We represent the polarizers by Jones matrices (see for
example [15]). A given experiment is described by the
matrix obtained by appropriate multiplication of T(w)
with the Jones matrices. The amplitude of the electro-
magnetic field at any position is represented by a vector
to characterize its polarization state. In this convention
o polarization is given by the basis vector (1,0) and 7 po-
larization by the basis vector (0,1). Over the frequency
range we are considering, the incident amplitude is con-
stant (broad-band excitatiorn).

Let us consider the situation with a polarized incident
beam, where we detect the transmitted intensity without
analyzer. The analog to Eq. (1) then becomes

AW = (7o)

U(UJ

)
)
SERENGH(E) o

The right-hand matrix represents the polarizer [our
Si (840) monochromator] and for convenience we choose
A, = 1 as mentioned before. A, is small for SR and
anyway unimportant if we consider the polarizer to be
perfect. Our experimental conditions justify this approx-
imation. The time-dependent amplitude A’(t) of the res-
onant scattering is related by a Fourier transformation to
the frequency-dependent amplitude A’(w) from Eq. (3).
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FIG. 2. (a) The calculated amplitude A'(t), in arbitrary

units, of the transmitted wave and its polarization direction
during the first 80 nsec after excitation. (b) The intensity
components I,,(t) (dashed line), Ir-(t) (dotted line), and
the total intensity I(t) = I»o(t) + Iro(t) (solid line), which is
the square of the amplitude shown in (a).

Figure 2(a) shows this amplitude as a function of time
and polarization direction. It can be seen that the radi-
ation is always linearly polarized but that the plane of
polarization is periodically rotating. Further, the ampli-
tude is changing, reflecting the decay and beating of the
collective excited state [16]. The intensity in our detector
is simply proportional to the modulus squared of A’(t),
ie., I(t) = I5(t) + Iro(t). This is shown as a solid line
in Fig. 2(b). For our experimental conditions the split-
tings of the Am = +1 and Am = —1 lines are equal
and lead to a single beat period of 14 nsec in I(t). The
figure also shows the I,,(t) (dashed) and I,,(t) (dot-
ted) components separately. They both show beating,
but with twice the frequency of the total intensity beats.
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FIG. 3. Comparison between calculated and measured to-

tal intensity. No analyzer is used in this geometry.

This arises because the intensity of each component goes
through a maximum (and a minimum) for both positive
and negative amplitudes, i.e., twice for every rotation of
the polarization vector.

Figure 3 shows the comparison between our measure-
ment of I(¢) and the calculation shown in Fig. 2(b). The
time-integrated intensity in the detector was 3.5 x 10°
Hz, and the background subtracted delayed intensity in
our time window (25-75 nsec) was about 0.5 Hz. This
data clearly demonstrates the limitation of conventional
SR forward scattering measurements. For the first 20
nsec the detector cannot recover from the prompt ra-
diation burst. Further, any lack of purity in the elec-
tron bunch structure results in significant perturbations
to the data as evidenced around 20 and 75 nsec in Fig.
3. It is important to note that this detection limitation
is already severe using dipole radiation on a present day
source. The use of undulator-based sources on existing
and future machines will not result in the measurement
of increased resonant intensities unless this problem is
addressed.

To suppress the unrotated component before detection
one can insert a crossed polarizer (analyzer) in the system
and separate only T, (w), the rotated component. The
matrix equation describing this is

Allw) = (Tm?(w))
-(39) () =) G0 (&)
(4)

The left-hand matrix represents the beryllium ana-
lyzer, assuming that it is perfect. For electronic scatter-
ing the transmission matrix is essentially diagonal and
application of Eq. (4) would lead to zero amplitude.
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FIG. 4. Comparison between calculated and measured in-
tensity of the rotated component I, (t).

Again the measured quantity is proportional to the mod-
ulus squared of A’(t) but now A’(w) is given by Eq. (4),
ie., I(t) = Ino (t).

Figure 4 shows a comparison of the calculation with
our measurement using the Be(00.6) analyzer to select
only I.,(t). The background subtracted delayed count
rate was 0.05 Hz in the same time window. This rate
does not include the first intense beat, which we can now
observe because of our strong prompt suppression. The
time-integrated intensity in the detector is only 80 Hz
corresponding to a reduction of 4 x 103, while the reso-
nant signal was only reduced by a factor 10.

In spite of the limitations of the Be(00.6) analyzer
(Bragg angle limits on the extinction and reflectivity lim-
its on intensity), a factor of 400 relative suppression has
been achieved in these measurements.

In summary, we have observed the time-dependent nu-
clear Faraday effect in 57Fe using SR. The results demon-
strate that, by using the time-dependent polarization
properties of NF'S, the unwanted prompt scattering can
be reduced by a large factor. In this work we show a
suppression of 2 to 3 orders of magnitude. In a differ-
ent context, polarimeter extinctions of order 10° have
been demonstrated using perfect crystal optics [17]. This
technology, which overcomes both limitations of the ana-
lyzer used in the present work, is optically well matched
to the undulator sources of the next generation facilities.
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Polarization mixing is not limited to the Faraday geom-
etry. Given that the quantization axis can be properly
oriented with respect to the incident beam, this technique
can be applied if the magnitude of the relevant splitting
is compatible with the experimental time window. The
technique will completely remove detector-imposed limits
on NFS intensities.
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