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Probing Individual Two-Level Systems in a Polymer by Correlation of Single Molecule Fluorescence
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We have measured the autocorrelation of the fluorescence of single aromatic molecules in poly-
ethylene at T =2 K. Intensity fluctuations are caused by frequency jumps when two-level systems
(TLS's) change states. Individual TLS's can be probed with minimal recourse to theory and no as-
sumptions about the distribution of TLS parameters. Besides providing a simple confirmation of the tun-
neling theory of TLS s, this new method, by eliminating statistical uncertainties, proves that while some
TLS s may be stable for several hours others are modified by transitions of their neighbors. Tunneling
times of individual TLS's are measured directly. Their temperature dependences reveal three types of
TLS-phonon coupling, of which one is new.

PACS numbers: 61.41.+e, 35.20.Yh, 36.20.Ey, 78.55.KZ

Single molecule spectroscopy is a new field in which
sharp resonances of single impurity molecules are re-
solved in the broad, inhomogeneous band of very dilute
and small samples. The first absorption spectra of single
molecules, recorded by Moerner and Kador [I], were
barely above the noise. Introduction of fluorescence exci-
tation by two of us [2] opened the way to many experi-
ments by dramatically improving the signal to noise ratio.
The main results in the first system studied, pentacene in

p-terphenyl crystals, were the following [31: observation
of the line shape of one molecule, its temperature depen-
dence, optical saturation, spectral diffusion caused by de-
fects, and the Stark effect. Since then, polyethylene
doped with perylene [4] or terrylene [5], as below, was
also studied. The line shapes of single molecules, pho-
toinduced spectral jumps, and the Stark effect were ob-
served in this polymer.

But the temporal distribution of fluorescence photons
also contains a wealth of information. Correlation of the
emission of single molecules is one of their hallmarks,
whereas in usual systems the effect is smothered by the
emission of many independent sources. In our first paper
[2], we demonstrated photon bunching caused by inter-
system crossing, an effect we later used to obtain the
crossing rates [6]. Experiments by Basche and Moerner
[71 nicely confirmed photon antibunching at times of the
order of the Rabi period of the molecule in the laser field.
Recent work [6,8] led us to expect the method could be
used to measure the dynamics of the matrix at low tem-
peratures.

Several properties of amorphous materials differ
strongly at low temperatures from those of crystals. The
specific heat, the thermal conductivity, and the attenua-
tion of ultrasound waves in glasses indicate the presence,
beside acoustic phonons, of other low energy excitations
[9]. In the late 70's and 80's, many papers were devoted
to optical transitions in crystals and glasses [10-12].
Lately, new work using time-resolved persistent spectral
hole burning [13,14] or photon echoes [15] displayed the

broad time range covered by dynamical processes in
glasses. We usually think of a glass as a solid prepared in

one of the multitude of secondary minima of the complex,
multidimensional intermolecular potential. Phillips [16]
and Anderson, Halperin, and Varma [17] suggested that
the anomalous excitations of glasses are tunneling jumps
of two-level systems (TLS's) in double well features of
the potential, each associated with two metastable con-
figurations of an atom or group of atoms. While twenty
years of effort have confirmed the broad lines of the tun-
neling model and much has been learned from the above
methods, we should like to describe a new experimental
method, removing all statistical effects, which has poten-
tial for all of the questions for which interpretation of
bulk measurements is complicated by the presence of an
ensemble [18,19].

Consider then the autocorrelation function of pairs of
fluorescence photons separated by delay r,

"'( ) =(1(r+ )I(r))/(I(r))',
where the temporal average should be taken over an in-
terval much longer than all the fluctuations of the source.
Deviation of g (r) from unity depends on the typical
amplitude and duration of changes in the counting rate
l(r). If we tune a high resolution laser to the sharp line
(here, 40 to 200 MHz wide at 2 K) of a single molecule,
subsequent changes of the molecular resonance frequency
are the main cause of intensity fluctuations in our solid
system. For single molecules in liquids, other effects are
important [20]. Such jumps of' the lines of single mole-
cules, reported in [2], were later assigned to spectral
diffusion [3], i.e. , shifts of the resonance caused by relax-
ation of the matrix. We call these jumps "slow" below,
because they have time constants of at 1east seconds and
may occur only once during a recording. The experi-
ments measure intensity fluctuations caused by faster
jumps. The jumps, spontaneous or photoinduced, may be
due to intrinsic TLS s in the polymer or to extrinsic ones
accompanying insertion of the fluorescent probe.
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with To ——15 K, molecule (c) of Fig. 4. But we feel this
too is explained by tunneling, because the prefactor is too
small for classical activation. According to Kagan's
theory of tunneling [23], activation may be necessary to
compensate a polaronlike stabilization of the TLS, which
does not follow it adiabatically during tunneling. This
new law would then imply strong TLS-phonon coupling.

In conclusion, direct measurement of TLS properties
such as the temperature dependence of jump rates, with
minimal recourse to models, should be useful in improv-
ing the theory of TLS dynamics, which is still subject to
debate [18], e.g. , regarding the strength of TLS-phonon
coupling. This coupling is exhibited simply, underlining
the presence of several mechanisms in one sample under
the same conditions, whereas most models assume only
one mechanism [9,19]. Evidence from hole burning, for
example, is less conclusive [19] because of ensemble
averaging. Further, one of the mechanisms above ap-
pears to be previously unobserved. Again, study of indivi-
dual TLS's proves the stability of some of them over
several hours, whereas bulk measurements cannot exclude
the possibility of constantly changing TLS s within a
stable distribution. Modification of some TLS's by one
another is also revealed directly. Finally, because work-

ing with single TLS s eliminates all averaging, it should
be a useful step toward a new method of identifying tun-
neling degrees of freedom.

We thank Professor K. Miillen who kindly gave us
some terrylene and Professor Yu. Kagan, for helpful dis-
cussions. Centre de Physique Moleculaire Optique et
Hertzienne is CNRS URA 283.
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