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Hydrodynamic Theory of Electromagnetic Fields in Continuous Media
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The hydrodynamic Maxwell equations of continuous media, valid for large amplitudes and small fre-

quencies, are derived. As any hydrodynamic theory, these equations are universal, nonlinear, and ir-

reversible. Consequences for dielectric liquids, ferrofluids, superconductors, and nematic liquid crystals
are briefly outlined.
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The Maxwell equations of continuous media,

B= —VxE, D=VxH —j„V B=O, V D=p

are rigorous, reversible, and incomplete. It was Lorentz
[I] who taught us how to understand them. Two steps
are involved: First, one starts from the microscopic
Maxwell equations containing only B and E, and divides

[2] the charge density into p, and V P, and the current
density into j„P, and VxM. The polarization P and
magnetization M, which subsume all charges and
currents that vary on the smaller, atomistic scales, are
then added to B and E: H =B/tLtp —M, D =cpE+P,
while preserving the structure of the Maxwell equations.
This alone already yields Eqs. (I), which are therefore
just as rigorous as the microscopic Maxwell equations
and very much incomplete, since they are valid irrespec-
tive of how P and M are defined. The reversibility of
Eqs. (1), a hallmark of microscopic physics, is manifest:
Each equation contains only terms of the same parity un-

der time reversal. To complete the description, one needs
as the second step: (i) a clear prescription for the above
division and (ii) the time dependence of the resultant M
and P. Generally, this entails the solution of a full-blown

many-body problem; linear response theory, certainly
feasible, is confined to weak fields; simplest is the quasi-
static approximation that takes P and M as functions of
E and B, respectively.

For comparison, consider the hydrodynamic equations
of an isotropic liquid, especially the Navier-Stokes equa-
tion [3]. These equations are universal, closed, irreversi-
ble, and nonlinear. They are independent of microscopic
interaction, valid for (say) helium gas, water, and liquid
metal. The number of fields and equations of motion are
the same, no microscopic or nonhydrodynamic informa-
tion (such as on P or M in the previous case) is needed
for the prediction of the fields time evolution. Dissipa-
tive, irreversible terms account for viscosity and heat
diA'usion, produce entropy, and restore equilibrium. Fi-
nally, shock waves, convective instabilities, and other non-

linear, large amplitude phenomena are well accounted
for. The price for these nice features is a confined range
of validity: low frequency and small wave vector, car, kg
(( l. (In practice, of course, the time r for establishing
local equilibria and the correlation length g that defines

their minimum spatial extent vary over orders of magni-
tude for difTerent systems at diAerent temperatures.
Hence the price one pays is only occasionally painful. )

A set of hydrodynamic Maxwell equations can be de-

rived that possesses all the above features. They are

D =Vx H —(8Ep+p, v+ jVT) —Vx (aVx Ep),

B = —Vx E —Vx (pVx Hp),

V B=O V D=p

(2)

where E and H are functions (in general nonlinear) of
the thermodynamic variables [4], especially D and B.
(Hp and Ep are the respective fields in the local rest
frame, moving with the fiuid velocity v. ) Equations (2)
are valid for any isotropie system in local equilibrium
(isotropic if without fields). Modifications occur only for
systems with spontaneously broken symmetries such as
superconductors and nematic liquid crystals. (We shall
consider them later. ) Equations (2) are irreversible, the
dissipative terms being those preceded by the tensors of
kinetic coefficients a, P, y", and t7. While cr is obviously

the electric conductivity (both Ohm and Hall), and y" the
Peltier tensor of the thermoelectric effect, a and p are
new. They precede the only dissipative terms in a non-

conducting medium. Without them, Fqs (2) cannot re.
store equilibrium there. We shall later calculate the
values of a and p, in a simple model, and see that they
are connected to M and P not being quite in equilibrium.
With two equations of motion accounting for two fields,
D and B, Eqs. (2) are obviously closed. Last but not

least, Eqs. (2) are nonlinear and describe arbitrary field

strengths.
The derivation of Eqs. (2) closely resembles derivations

of other hydrodynamic equations. In fact, for a station-
ary system (v—=0) and without coupling to the tempera-
ture (y —=0), it is amazingly simple. We start from the
thermodynamic relation for the energy density [2] de
= Tds+ E d D+ H d B, which unambiguously defines E
:—Bs/t)D and H =6@/BB, in the same sense temperature is

defined thermodynamically, as an equation of state. (The
mass density is quite irrelevant in this context, hence p dp
is suppressed. ) The variables themselves are in turn
defined by the two nontemporal M axwell equations,
V D =p, and B =Vx A. As long as these two equations
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R = cr,~ F; E~ +p;~ (V x H ); (V x H )~

+a;~(Vx E), (Vx E)~, (3)

just as one would expand R in V; T or V;t~+V~i;. (cr and
~ are not necessarily mutually exclusive: A bad conductor
may well reach VxE=0 much more quickly than E=O.
Then the first term in R represents a small perturbation,
which nevertheless should be included for its long time
effect. In a good conductor, the third term should not be
important. ) Since the system is isotropic if without field,
the three tensors are of the structure a6''j+QpE'Ej for
H 0, and a6ij+ a~H HJ + acJk Hk for E 0. All
coeScients are functions of the thermodynamic variables,
especially the fields [5]. a, is reactive, i.e. , it only con-
tributes to b; below, not to R; the same holds for p, and
o.„ the latter being the Hall conductance. [It is not
diScult to write down the higher order terms in Eq. (3) if
necessary. Because of the proliferation of transport
coeScients, however, this is not an overall useful exer-
cise. ) While producing entropy, D and B=VxA also
evolve with time, and their equations of motion can be
quite generally taken to be

D; =8m/8A; j,'+V~b~j. , A; =——&/SD; —a, , (4)

where the terms j,', b;J, and a; are yet to be determined.
With c being a conserved quantity, we may write
—V Q =p = Ts+ E D+ H V x A, insert Eqs. (4), and in-

sist on being able to write the right-hand side as a total
divergence. This results in

and

Q =(E+a) x H+ Ex b

R =a (Vx H) —b (Vx E)+S&F~+j, E,

(5)

(6)
where

A(J Ak Gkij +Sij ~ SiJ SJ(

and

E;i =
2 (V;E&+VIE; ) .

are satisfied, any D(r) and B(r) fields are permissible.
Only in equilibrium do D and 8 in addition satisfy E=O
in a conductor, V&E=0 in a dielectric medium, and
Vx H =0 generally. (The current of the usual static
equation is missing here, since it would produce entropy.
It appears later in the stationary solution, or in the equi-
librium condition of the superconductors. ) These equilib-
rium conditions result from minimizing the total energy
fed r of a given volume, with respect to variations in D
and B with the appropriate constraints [2]: fp, d r given
within the connected volume of a conductor; V D given
for every point of a dielectric medium and V B vanishing
everywhere. Now the bold step that becomes less daring
the more one thinks about it. Outside equilibrium, the D
and B fields produce entropy, the local rate Ts =R of
which can (close to equilibrium) be expanded in the small
parameters E, V& H, and Vx E,

Comparing Eq. (6) with (3), we find j,' = o;~ E~, a;
=p~(Vx H)~, b; = —a~(Vx E)~, and S~ =0, which
brings us to Eqs. (2) for v=O, y=O.

There is an intriguing analogy worth exploring. Hy-
drodynamic variables frequently form canonically conju-
gate pairs, of which usually one is a conserved quantity
and the other a broken symmetry variable. An example
is the pair: density p and phase w in superfluids [3]. The
energy depends on Vp, and the reactive, nonconvective
dynamics is given by p =Be/6p = —V(Be/BVp), p = —Be/
Bp= —p. Another example is the pair: momentum den-
sity g and displacement vector u in elasticity theory [6).
For small u, the energy depends on uj =(V;u~+V~u;)/2,
while the dynamics is again g; = —&/Su; =V~Be/Bu;~,
u; =Be/Bg; =i;. Compare these with the pair D, A. Ob-
viously, the energy again depends on the spatial deriva-
tive of A, and the reactive dynamics conforms to the
canonical form D=Be/6A =Vx H, A = —Be/BD= —E.
Two remarks: (i) The special gauge of A = —E was
chosen to highlight its close analogy to p= —

p or u =v.
The derivation leading to Eqs. (5),(6) could of course
have been performed without a gauge choice. (ii) The
cross terms a =jE+, j'= —jVx H+ . . are in-

deed allowed by symmetry, but would result in A = —(1
+ r()E+ . , which does not comply with the canonical
relations and contradicts Eqs. (1) in the linear response
regime. Therefore, rt =0. [If r( were a constant scalar, a
rescaling A/(1+ r() A would render it unnoticeable. ]

Except oE, a sink term accounting for relaxation, all
other terms in D and B of Eqs. (2) are currents, account-
ing for "transport. " To better understand the physics
represented by ~ and p, we may consider a simple model
of a paramagnetic dielectric medium with can=0. Assum-

ing M = —(M —M,q)/rM, and P = —(P —P,„)/r p,
where M,„and P,„are the respective local and instan-
taneous equilibrium values, a quick calculation for I;p,
iM « co yields

pGp
= r p(f GpB p/BD ), Qpp = r M(1 ppB p/BB ),

(7)

while the other coeScients vanish. Note the curious cross
relationship: p in B depends on rp, and a in D depends
on zM. Of course, M and P are in general much more
complicated, but this only alters the value of a and p, not
the hydrodynamic terms they precede. These terms,
neglected up until now, are. qualitatively important, since
they are the very ones that restore equilibrium with
respect to V & E =0 and V x H =0. Therefore, hydro-
dynamic calculations (such as in ferrofluids or nematics)
employing Eqs. (2) without a and p would indeed lead to
blatantly nonsensical results and is not usually done. Pre-
valent are hydrodynamic calculations in which the equi-
librium conditions V& H =Vx E =0 are imposed, with the
notion that these are always much more quickly achieved
than the other equilibrium conditions such as constant
temperature. However, M and P lag behind external per-
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—ird(PB 2c/BB 2+ aB2e/BD 2) . (9)

Given the structure of Eqs. (2), with the conductivity
vanishing, the soundlike damping is hardly surprising.
But this expression is valid in the presence of arbitrarily
large static fields and does provide a way to measure (or
calculate) a and P.

Now we study the coupling to the other hydrodynamic
variables. The hydrodynamic theory of an isotropic po-
larizable and magnetizable liquid was recently derived,
whereby a number of old and controversial questions
(such as what the total momentum or what the pressure
is) had to be settled [8]. However, adhering to orthodox
faith [9], b and a of Eqs. (4) were taken to be zero.
Rederiving the liquid s hydrodynamic theory including a
and b, the bulk of the equations in Ref. [8] is found un-

changed, except the entropy production, which becomes

R=f VT +a (VxHp) —b (VxEp)

+ (j' —p, v) Ep, (10)

where f is the entropy current; the other thermodynamic
forces are not displayed here. The dissipative terms

turbations as any internal, nonhydrodynamic variables do
and produce entropy on the hydrodynamic level. There is

no reason to believe that their relaxation times are always
much smaller. In fact, it is incorrect to assume V&E
=Vx H =0 even for stationary, nonequilibrium situations
of strictly vanishing frequencies, cf. the static, nonpoten-
tial electric field of Eq. (8) below.

What are the ramifications of the hydrodynamic
Maxwell equations? First and foremost, D and 8 are
now treated on equal footing as the other thermo and hy-

drodynamic variables. Therefore, coupling among them
becomes important. Before we embark on this subject,
however, in the manageable form of a quick dip into
three illustrative examples, we shall first discuss three
simple consequences of' Eqs. (2) while assuming a, P, and

ci to be scalars, and v, j=0.
(i) The stationary solution (D =B =0) for a =0 is

Vx H =~E, Vx E =Ex V(pa)/(I+ p~) .

If V(Per) =0, these are familiar static Maxwell equations.
In the presence of a temperature or pressure gradient,
however, because P and cr are in general functions of
these variables, E is nonpotential. [There is no contradic-
tion to Eqs. (1), where E is dined as —A, rather than
Bc/BD. Then of course V x E =0 if B=0.)

(ii) In the opposite limit (ideal dielectrics, a =0), the
higher order gradient terms render the stationary solution
more complicated, giving rise to fields decaying exponen-
tially near the surface. They are very similar to the hy-

drodynamic sq modes [7]. In the same system, propaga-
tion of electromagnetic waves (at low frequency and
small amplitude) is described by

~ 2/q 2 (B 2 e/ B8 2 ) (B 2 e/ BD 2 )

of Eq s. (2) follow directly from Eq. (10), a man i-

festly Galilean invariant quantity. (The cross terms a
=(VT+, f = —(Vx H+ . . are permitted by sym-
metry. Again, if g is a constant scalar, both terms repre-
sent an unnoticeable gauge transformation; otherwise,
they are of higher order. Hence ( =0 for simpler
display. ) The equations of Ref. [8], amended with Eqs.
(2) and (10), are the proper and rigorous hydrodynamic
theory of ferrofluids [10]. In comparison, the usual ap-
proach (consisting of the static Maxwell equations, a pos-
tulated equation of motion for the magnetization, and the
complete neglect of the polarization [11])seems deficient,
especially in light of Eqs. (7). A detailed discussion will

be published elsewhere.
We turn our attention briefly to superconductors. The

most important modification here is the additional depen-
dence of the energy on the gauge invariant combination
(6/2e)Vp —A, p being the phase, spontaneously broken
in superconductors. As a result, Be/6A =Vx (Be/BVx A)
—Bs/BA =Vx H —j, =0 is the new equilibrium condi-
tion, where j, denotes the supercurrent. Naturally,
V && H —j, is now the thermodynamic force, and R a
quadratic function of it. Hence V x H —j, substitutes
V&H, both in 0 and 8 of the hydrodynamic Maxwell
equations, Eqs. (2).

Nematic liquid crystals are interesting in this context
because they permit very direct dissipative couplings such
as between the two thermodynamic forces, VxEp and
nx Ift (where @=6'/Bn is the "molecular field" [6] of the
director n),

dn/dt = n x (yn x Ift+ tIV x Ep),

D = . —Vx (aVx Ep+ tin x Ift)

[The tensors are now anisotropic even in the weak field
limit, e.g. , a;~ =a&(B~.—n;n, )+a~~~n;n~ ]N. ote that, . due
to the spontaneously broken rotational symmetry, the
Maxwell equations are modified and include typically
nematic terms. These are the proper equations to de-
scribe the field-driven convective instabilities of nematic
liquids [12].

Finally and briefly, the boundary conditions: As a re-
sult of the second order spatial derivatives in Eqs. (2), ten
rather than six boundary conditions are needed to com-
pletely specify any solution. They can be obtained in a
standard procedure that has been recently developed for,
and applied with success to, other hydrodynamic systems
[7]. These include isotropic liquid as well as systems with
broken symmetries such as superAuid, antiferromagnets
and liquid crystals.

In summary, a set of irreversible, closed and nonlinear
Maxwell equations is derived according to the hydro-
dynamic concept. Two additional thermodynamic forces
are identified, V&Hp and V&&Ep. They give rise to dissi-
pative terms and represent the meehan isms for elec-
tromagnetic fields to restore equilibrium in nonconduct-
ing media. Two efTects are considered: a nonpotential
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static E field in the presence of a temperature or pressure
gradient, and the soundlike damping of the electromag-
netic waves. Many more consequences are expected,
especially for ferrofluids, superconductors, and nematics,
where the Maxwell equations are explicitly modified.
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