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Fluctuations and Pattern Selection near an Eckhaus Instability
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We study the effect of fluctuations in the vicinity of an Eckhaus instability. Fluctuations smear
out the stability limit into a region in which fluctuations and nonlinearities dominate the decay
of unstable states. We also find an effective stability boundary that depends on the intensity of
fluctuations. A numerical solution of the stochastic Swift-Hohenberg equation in one dimension is
used to test these predictions and to study pattern selection when the initial unstable state lies
within the fluctuation dominated region. The nonlinear relaxation is shown to exhibit a scaling
form.
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Recent experimental studies of Rayleigh-Benard con-
vection in CO2 gas [1],convection in binary mixtures [2],
electrohydrodynamic convection in nematic liquid crys-
tals [3], and Taylor-Couette flow [4] have detected ran-
dom fluctuations of thermal origin that are strong enough
to be analyzed quantitatively. Whereas the eKect of ther-
mal fluctuations on thermodynamic equilibrium is now
well understood in general terms, much less is known
about their eKect in the vicinity of nonequilibrium in-
stabilities. Pioneering work in this direction was done
by Graham [5], and Swift and Hohenberg [6]. It was
believed, however, that since characteristic thermal en-
ergies are several orders of magnitude smaller than the
characteristic driving or dissipative energies involved in

many nonequilibrium instabilities, the effect of fluctua-
tions would be far too small to be observable. The re-
sults of these recent experiments have renewed interest
in the subject since they have opened the possibility of
finding nontrivial phenomena due to fluctuations close to
nonequilibrium instability points.

We study in this paper the eÃect of fluctuations on
the Eckhaus instability [7]. The Eckhaus instability is
a longitudinal instability often exhibited in systems that
display patterns which are spatially periodic. It has been
exhaustively studied in many systems, including, for ex-
ample, the stability of a set of parallel convective rolls in
Rayleigh-Benard convection [8], the stability of a periodic
array of cells during directional solidification [9], and in-
stabilities of stationary standing Faraday waves [10]. We
also note particularly detailed experimental studies of the
Eckhaus instability in electrohydrodynamic convection
in nematic liquid crystals by Lowe and Gollub [11] and
Rasenat, Braun, and Steinberg [12]. Three main issues
are addressed here: the fluctuation-induced smearing of
the classical Eckhaus boundary, the nonlinear relaxation
of the unstable solution, and the asymptotic periodicity
of the new stable solution following the instability (this
is often referred to as pattern selection).

In the absence of fluctuations, the Eckhaus boundary

of potential or gradient systems is located at the line
where both the first and second functional derivatives
of the appropriate Lyapunov functional vanish; hence it
separates regions of metastability and instability. This is
the analog of a spinodal line in a first order phase tran-
sition. Our study can be motivated by analogy with this
latter case: If fluctuations are included in the descrip-
tion of a first order phase transition, the spinodal line
ceases to exist [13]. Instead, states that are not stable
are classified as metastable or unstable with reference
to a particular temporal scale of evolution (observation
time). States that do not decay within such a scale are
said to be metastable, and unstable otherwise. The of-
ten narrow region that separates both types of behavior
is shifted with respect to the spinodal line, and defines an
effective stability boundary known as the "cloud point. "
We found here related phenomena, namely, the smearing
of the Eckhaus boundary for finite amplitudes of the fluc-
tuations and the emergence of a different time scale for
the decay of the unstable state. This scale depends on
the intensity of the fluctuations and identifies the observ-
able stability boundary. Our analysis of the fluctuation-
dominated regime is similar in spirit to Binder s deter-
mination of the range of validity of a linearized descrip-
tion of phase separation [14]. He derived the analog of a
Ginzburg criterion to describe the effect of fluctuations
on the long wavelength instability known as spinodal de-
composition. Finally, we also discuss pattern selection
when the initial state is within the transition region.

Although we expect our analysis to be of wider appli-
cability, we restrict ourselves here to the one-dimensional
stochastic Swift-Hohenberg (SSH) equation [6],

BQ(x, t) 02
1+ g(x, t) —g(x, t)

Ot Bx2

+ v D((x, t),
which is known to be a model of Rayleigh-Benard con-
vection near onset. The periodicity of the stationary so-
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lutions of Eq. (1) is commensurate with the convective
rolls, e is the reduced Rayleigh number, and $(x, t) is a
Gaussian random process satisfying

(((»&)) = 0 4(» ~)((x' &')) = 2b(x —x')b(~ —~')

(2)
The value of D is proportional to the intensity of the
thermal fluctuations in the fluid. For D = 0 and e ) 0,
Eq. (1) admits periodic stationary solutions Q~(x) of
wave number q with q I, ( q ( ql. , and q~l, = gl + +e
[15]. However, only those solutions with q & ( q ( q@

(q I, ( q @ ( q@ ( ql, ) are linearly stable. Periodic
solutions with q outside this range exhibit a modulational
instability known as the Eckhaus instability.

The decay of the unstable solution is triggered by Auc-
tuations. In order to study such decay, we linearize Eq.
(1) around a stationary periodic solution @~,. (x), with

q@ & q, & ql. . Linearization leads to an eigenvalue prob-
lem for a spatially periodic operator. According to Flo-
quet's theorem, the normalized eigenfunctions f~,. &(x)
are of the form [16)

) n i(nq„+A)x (3)

each associated with an eigenvalue A(q, , k), which deter-
mines the growth rate of that particular eigenfunction.
Because the SH equation is real, these eigenvalues satisfy
the symmetry relation A(q, ,

—k) = A(q;, k). Also, the
invariance of the SH equation under spatial translations
implies A(q, , k = 0) = 0. Let +k~ be the values of k
that maximize A(q, , k) and let f~(x) be the real (and
normalized) combination of their associated eigenfunc-
tions. Then, it is possible to describe the early stages
of the decay of the unstable state by a linear stochastic
equation governing the amplitude u(t) of f (x), in the
eigenfunction expansion of @(x,t) —g~,. (x):

u(t) = A u(t) + VDg(t) . (4)

q(t) is a white Gaussian random process which re-
sults from the projection of ((x, t) onto f~(x): g(t) =
f dx f (x)g(x, t), the average of which is zero. When the
eigenfunctions in Eq. (3) are normalized, the variance of

g turns out to be independent of the initial periodicity
q, . Equation (4) is valid until a time t„at which the am-

plitude u becomes large enough such that nonlinearities
become important. The solution of Eq. (4) with initial
condition u(t = 0) = 0 is u(t) = h(t)e" ', with

t
h(t) = VD ds e -'q(s) .

The amplitude h(&) is a Gaussian random process, aver-
aging to zero, and with a time-dependent variance. From
its definition it is easy to see that it becomes stationary
after a time t A . After this time, one can replace
h(t) by its long time limit, h(t = oo), which is a Gauss-
ian variable of standard deviation g(h2) = gD/A
Within this approximation, the calculation of the aver-

age time t„at which u(t) crosses a given reference value
uz is standard and gives [17]

lnj ur (6)
A ( D)

Two characteristic time scales emerge from this analysis.
The time t signals the end of the fluctuation dominated

regime and the beginning of a linear deterministic regime.
By choosing uz equal to a given (small) fraction of the
final saturation value of u, t„can be interpreted as the
time at which nonlinear terms begin to be important.
The approximation of replacing h(t) by its asymptotic
value is obviously true only if t (( t„, which implies
u~2A )) D. When

D
A (7)

Q~

there is no clear separation of time scales, and there will
not be a distinct linear deterministic regime. Nonlinear
effects then become important even in the early fluctua-
tion dominated regime.

The arguments given above are of a general nature.
Consider now an initially periodic state of wave number

q, & q@. The linear growth rate of the most unstable
eigenfunction vanishes near the Eckhaus boundary as

A (q, —q@) . (8)

This can be seen by noting that the symmetry properties
of A(q, , k) stated above imply that, for small k, A(q, , k)—
ak2 —bk4 +, where a and b are functions of q, and e.
b must be positive to avoid instabilities with arbitrarily
large wave number, and a changes sign at the Eckhaus
boundary q, = qz. Then, to first order, a q, —q~. The
maximum A~(q, ) of A(q, , k) is at k = +/a/2b, which
leads to Eq. (8). In addition, it can be seen that the
most important wave number in the Fourier expansion
of the eigenfunction f~(x) is q = q, —k~. From the
expression for k~ we get

1- (q* —q~)'.
We now define a transition region of initial wave num-

bers q, around q~, within which the extent of the linear
deterministic regime vanishes. From Eqs. (7) and (8) we
find that this transition region is determined by

0&q, —qE &
Qg

where C is a constant of order 1. Note that uz is flnite
near the Eckhaus boundary, since it has to be taken as
a finite fraction of the final saturation amplitude of the
fastest growing mode, and this quantity has no singular-

ity across the Eckhaus boundary.
These results are restricted to an initially unstable

state; hence they only apply to q, & q@. Initial states
with q, ( q~ which are linearly stable according to a
deterministic calculation can also decay because of fluc-

tuations, extending the transition region to q, ( q~. The
smearing of the Eckhaus boundary and the concomitant
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reduction of the region of linearly stable states can be
thought of as an eEective shift of the Eckhaus boundary
to a new value q~ ( q@. It should be stressed, however,
that this new effective boundary is only defined with ref-
erence to a given observation time for the decay of the
metastable state.

We next address the implications of our analysis on
the issue of pattern selection. Pattern selection refers to
the determination of a global wave number qy of a con-
figuration obtained after a long time, as a function of the
initial wave number q, . The wave number qy is defined
here as qy = vrny, where ny is the number of nodes of the
configuration per unit length [18]. If q, lies outside the
transition region, the initial stages of the decay of the
unstable state are well described by linear theory, and
the fastest growing mode in the linear regime, q, will

mostly determine qy. In this case, the evolution does not
lead in observable time scales to a periodic configuration
of wave number q;„ that minimizes the Lyapunov func-
tional associated with Eq. (1). In fact, earlier numerical
simulations of the SSH equation showed that qy = q
when q; is not too close to the Eckhaus boundary [19].
These results were consistent with previous simulations
of the amplitude equation also in the absence of noise

[20]. On the other hand, if q, lies inside the transition
region, nonlinearities and Quctuations are likely to alter
these conclusions.

To test our predictions we carried out a computer simu-

lation study of the one-dimensional SSH equation. Com-
plete details of the algorithm used can be found else-
where [21]. We chose e = 0.05625 and discretized Eq.
(1) on an evenly spaced grid with N = 8192 nodes and
Ex = 2x/32. The equation was integrated forward in
time with Et = 1 x 10 4, and the results averaged over a
number of independent runs, typically 10—20. With this
choice of Ax, Aq = 2x/%Ax = 0.004.

Figure 1 presents the average value of qy as a function
of q, for D/Ax = 0.05, 0.1, and 0.2. The dashed line
is the value of q~ found by numerically calculating the
Floquet spectrum on the same grid used to solve Eq. (1).
The analysis also yields qz —1.201. Simulation points
for q; ( q@ are also shown in Fig. 1: although in the
stable range according to the deterministic calculation
they are seen to decay. Furthermore, for q; far enough
from the Eekhaus boundary the value of qy obtained from
the simulation approaches q~ (which in the same limit
approaches 1). However as q; —q@ is decreased, the data
deviate from g~. The size of the region where gy deviates
from q identi6es a transition region that increases with
D, in a manner consistent with the prediction of Eq.
(10). By taking the value of 1 uT = 0.219, Eq. (10)
gives a size for this transition region extending up to
q; —1.25, 1.27, and 1.30, for D/Ax = 0.05, 0.1, and
0.2, respectively, which is consistent with the trend of
the data in Fig. l. A more detailed comparison of Eq.
(10) with our numerical results has not been attempted
since Eq. (10) only gives an estimate with undetermined
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FIG. 1. Final average wave number qy as a function of
the initial wave number q, , for several values of the intensity
of the fluctuations D/Ax: 0, 0.05; A, O. l; and, 0.2. The
straight solid lines are linear fits to the data. The dashed line
is q, the wave number corresponding to the eigenfunction
of fastest growth given by linear theory. The error bars in
the figure represent the 2o. confidence interval for the sample
studied.

coefBcients.
In contrast with the prediction of linear theory [Eq.

(9)], the simulation points for low enough q, lie on
straight lines, so that the exponent 1/2 in Eq. (9) is
changed by fluctuations to a value close to l. We have
defined an eKective stability boundary q@, a function of
D, that separates stable from unstable states within our
simulation time (t —100; see Fig. 1). We define it to be
equal to the intersection point between the straight lines
in Fig. 1 and the line q, = qy. This gives q@ = 1.16, 1.14,
and 1.11 for D/Ax = 0.05, 0.1, and 0.2, respectively. In
addition, our data disagree with standard criteria for pat-
tern selection according to which qy = q or qy = q
when q, lies in the transition region.

Last we describe our numerical results for the tem-
poral evolution of the dominant periodicity of the con-
figuration q(t) after it becomes linearly unstable. The
function q(t) is defined as q(t) = em(t), where n(t) is the
number of nodes of @(x,t) per unit length, averaged over
independent runs. The decay is found to take place in a
characteristic time w with an apparent divergence as q,
approaches q@. A similar behavior has been observed in
simpler zero-dimensional stochastic models used to de-
scribe the region that separates a metastable from an
unstable state [22]. There, it is possible to character-
ize the temporal evolution in terms of scaling relations.
With this motivation in mind, we have found that our
data are well described by a scaling relation of the form

q(t) —qz = (q' —qz) f (t(q' —q~)'), (11)

as shown in Fig. 2 for D/Ax = 0.1. The best scaling
is found for z = 1.7. Scaling is also observed for other
values of D, with z in the range 1.65—1.75.

Sealing relations as Eq. (11) could also be worth ex-
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FIG. 2. Scaled average periodicity of the configuration as
a function of time after the instability (the unscaled values are
shown in the inset) for D/L5 x = 0.1. The value of z = 1.7 has
been used. The values of q, shown are (from top to bottom
in the right of the inset and the corresponding symbols in the
figure) q, = 1.119,1.211, 1.219, 1.230, 1.238, and 1.250.

ploring to describe the transient dynamics of systems
undergoing generalized forms of spinodal decomposition
in which a large number of long-lived metastable states
could occur.

Detailed comparison of our results with experiments
would certainly require at least the consideration of a
two-dimensional SSH equation, but we expect that the
general ideas exposed here, namely, the existence of a
transition region separating stable and unstable states
and the identification of an observable stability limit
shifted with respect to q~ and related to an increase of
the characteristic relaxation times, are of wider applica-
bility. We note, for example, qualitative similarities with
some experimental findings. Lowe and Gollub [ll] ob-
served the decay of states in the deterministically stable
range and their evolution towards states of wave number
intermediate between q and q;„. In addition, in the
experiments by Rasenat, Braun, and Steinberg [12], the
Eckhaus boundary was determined in a way very similar
to ours, and it was noted that, in contrast with deter-
ministic theory, the experimental results for qf —q, and
the characteristic time scales of the decay of the unsta-
ble state as a function of q, were well Gtted by straight
lines. Further experimental work, especially in systems
in which the intensity of the thermal fluctuations is rel-
atively large, is certainly needed to clarify whether the
effects described above can be explained by our theoret-
ical arguments.
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