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Measurement of Energy Spectral Density of a Flow in a Rotating Couette System
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The energy spectral density of axial velocity components in a rotating Couette-Taylor system was ob-
tained using a Fourier transform of axial velocity distributions. As this configuration has well defined
spatial periodicity, strong peaks appear on the spectrum corresponding to Taylor vortex flow and wavy
vortex flow modes and their harmonics. A continuous background shows an exponential decay with wave
number, which supports the results of the numerical simulations. A variation in the decay rate at re-
duced Reynolds number shows a maximum at R* = 22. At this Reynolds number, an energy exchange
between the first and second harmonics was observed.

PACS numbers: 47.20.—k, 47.32.—y

Flow in a rotating Couette system has been extensively
used for investigating the passage of flow transition from
laminar to turbulence through chaos, since a transition is

gradual and nonhysteretic [1]. In a system with the outer
cylinder fixed and suScient height to gap ratio (I ) 20),
the controlling parameter is the Reynolds number R.
When increasing R, a flow transition occurs at R, to Tay-
lor vortex flow (TVF), which forms a stationary axial roll
structure and gives rise to a nonzero axial velocity com-
ponent. At still higher R, R„, a further transition to
wavy vortex flow (WVF) occurs where an azimuthal
wave mode sets in. At still higher Reynolds number, two
kinds of secondary azimuthal waves (MWV) start to
modulate the WV F, leading to a quasiperiodic flow

motion. It has been reported that one of these azimuthal
modes, called the GS mode [2], modulates the WVF glo-
bally and another, the ZS mode [3], is a standing wave
and appears strongly near the outflow jet region in a roll

pal I .
We have experimentally studied this quasiperiodic

mode (MWV) using a space-averaged power spectra
from data sets of time-dependent velocity fields obtained
by the ultrasonic velocity profile measuring method [4],
and reported that two azimuthal wave modes of the so-
called GS and ZS modes coexist over a wide range of the
Reynolds number [5], which support the findings of
Coughlin et al. [6].

In all of the earlier experimental investigations includ-
ing our own [7] (except for flow visualization studies),
the temporal periodicity has been used to characterize
these wavy modes [8]. On the other hand, in the numeri-
cal studies such as those of Marcus [9] and Coughlin and
Marcus [10], the energy spectrum which was obtained
from spatial information was used for investigating these
characteristics. Our data set used in the earlier reports is

comprised of 128 spatial points and 1024 temporal points.
ln a separate paper [5], this data set was viewed as 128
time series of 1024 data points and the position-de-

pendent power spectra were used for investigating the
temporal characteristics of the MWV regime. In general,
however, it is possible to draw out spatial characteristics
of a flow field from the same data set. The configuration
of the rotating Couette system has a very clear and well
defined spatial periodicity in the axial direction so that
the Fourier analysis in the space domain directly yields a
spectrum of wave numbers. We report here results of an
analysis of such data by using the spatial Fourier trans-
form.

The experimental setup and measuring method were
described in detail in Refs. [4,5]. The radius ratio of our
Couette system is tI=R;/R, =0.904 (R; is the radius of
inner cylinder and R, is that of outer cylinder) and the
aspect ratio is I =I/d =20 (d=R, —R;, L is the column
height). Only the inner cylinder is rotated. The Rey-
nolds number R is defined as R = OR;d/v (0 is the angu-
lar velocity of the inner cylinder, v is the kinematic
viscosity of the working fluid) and the reduced Reynolds
number as R* =R/R„where the critical Reynolds num-
ber R, is 134.5 [1]. The liquid used in this experiment
was a mixture of water and 30% glycerol. The measuring
method was by ultrasound velocity profile monitor [11],
which can successively obtain a series of instantaneous
velocity profiles. A measuring volume of one data point
has a half disk shape of radius 2.5 mm and thickness 0.75
mm with its center located at r =R, . The measurement
region with 128 spatial points in between starts at 40 mm
from one end of the column and extends to 135 mm. The
measurement time was 72-130 msec for a velocity level
of a few centimeters per second. The data used in this re-
port are for Reynolds number 9.7 ~ R* ~ 39.07 and cov-
er the flow regimes of WVF and MWV.

We measured the velocity distribution of the axial
component along the outer wall, V, (z, t), in a form of VJ
(i =0-127, position; j=0-1023, time). A spatial fast
Fourier transform was performed on each of the 1024 ve-
locity profiles, yielding 1024 spectra, V&~ (complex,
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FIG. 1. Energy spectral density. R* =16.40. FlG. 2. Energy spectral density (peak area) of fundamental
mode (ko) and its higher harmonics. Solid square, R* =24.8;
open square, 20.7; solid diamond, 18.2; and open diamond, 16.1.

k =0-128, wave number). A cosine window was used at
both ends (10% of the total data length) of the profile
with an additional 128 points of null data for
i = 128-255. The Fourier spectrum was computed as
SlJ =~VI,J~, and averaged over 1024 spectra. A spec-
trum then represents a one-dimensional energy spectral
density in the axial direction as a function of axial wave
number. Our measurement is one dimensional and the
How is nonisotropic.

Figure 1 shows the time-averaged energy spectral den-
sity obtained at R* =16.40. Although we obtain time-
dependent spectra and some periodicity is observed, we
focus our observation here on the time-averaged spectral
density. In the lower wave number region, isolated peaks
are clearly seen, representing the fundamental mode (ko)
and its harmonics. The confirmation of this fact was es-
tablished by comparing the corresponding wavelength of
the highest peak (lowest wave number, ko) with the size
of the rolls. This wave number ko corresponds to the
TVF and WVF, since axially they have very similar
wavelengths. In this example, up to 4 times higher har-
monics (4ko) are observed. This will be discussed later.
At higher k, the spectrum is exponential (linear in the
log-linear plot) for quite a wide range of k. This agrees
with results obtained in numerical simulations of TVF by
Marcus [91 and of WVF and MWV by Coughlin and
Marcus [10). Marcus discussed the results, in contrast to
Benard convection, by stating that "Only the k =0 mode
is driven directly by the torque. . . and it must lose its en-
ergy to other modes by nonlinear interaction. Energy
given to the system is passed to higher k modes and no ki-
netic energy is given by other mechanisms and thus the
energy spectrum must be smooth, while in Benard con-
vection, nonlinear interaction from heat Aux gives energy
directly to higher modes and thus it is not smooth. " At
the same time, Marcus used dimensional analysis and
showed that indeed the spectrum is exponential. It is
likely that this argument must be valid not only for

modes which follow the shift-reflect (SR) symmetry used
in these simulations but also for modes decomposed gen-
erally, as evident from the result of our measurements.

All the modes used in the simulation fulfill a shift-
reAect symmetry while our data points are in arbitrary
units defined in terms of the resolution of the wave num-
ber. If those modes which appeared in the spectra as iso-
lated peaks fulfill the SR symmetry, then they can be
compared with the results of simulation directly. The
peak areas of the isolated peaks at lower k were estimat-
ed by subtracting the exponential background under the
peaks (linear in the log-linear plot) and then plotted as a
function of k as shown in Fig. 2. It shows a smooth but
nonexponential decrease with k. Nevertheless, this also
agrees qualitatively with the results of simulations by
Marcus and by Coughlin and Marcus, if one scrutinizes
their results more carefully. Rather the linear relation-
ship in their plot on a log-linear scale is violated at lower
wave numbers, and shows a tendency similar to ours.

In an attempt to scale the variation of the slope of en-

ergy spectral density with respect to Reynolds number,
the spectrum was fitted to an exponential curve, log(S)
= —8k+ B, by a least-squares fitting routine using the
part which includes no peaks. The result is plotted in Fig.
3. The variation of the slope (or decay rate) (A) is

smooth and gradual. It increases with R*, reaches a
maximum, and then decreases. The decrease at higher
R appears steeper than the increase at lower R*. The
decrease in the slope of energy spectral density means
that the energy is preferentially diluted to modes at
higher wave numbers. Our results seem reasonable if one
considers that the energy is given into the k =0 mode and
then progressively passed to higher wave number mode.
However, it is interesting that the slope is smaller below
R* =22 too. This tendency was observed for all other
data sets obtained, although the R* at which the max-
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FIG. 3. A variation of slope (A, solid square) and intersect
(8, open square) of exponential decay of continuous back-
ground of energy spectral density with respect to the reduced
Reynolds number.

imum slope is reached changes from one data set to
another. On the other hand, the variation of 8 which is a
measure of the magnitude of continuous background
shows a smooth and monotonous increase with R *.
These results suggest that fundamental modes (TVF and
WVF) keep developing until R* = 22, and concentrate a
larger portion of the energy in these modes, but beyond
this Reynolds number, participation of other modes starts
to develop.

Figure 4 shows the variation of axial energy (peak
area) of each axisymmetric mode with respect to Rey-
nolds number. The energy of the ko mode increases
monotonically. On the other hand, the 2ko harmonic
(kz) shows a strong dip at R* = 22 and then slowly re-
covers. The 3ko (k3) harmonic starts to increase and the
4ko mode disappears at and above R* = 22. The highest
harmonic observed, 5ko, appears to increase slowly but
scattering of the data is large. This is due to a relatively
large uncertainty arising from a low energy level com-
pared with the corresponding background. The variation
of energy for each harmonic mode shown in this figure
also suggests a nonlinear interaction between these
modes. For instance, the k3 mode is excited at R = 22,
presumably by obtaining its energy from the k2 mode.
However, since the participation of the fundamental
mode is (93-95)% of the total energy in comparison to its
harmonics at less than 5%, and in addition, since we had
not been able to resolve WVF from TVF in the experi-
ment, the nonlinear relationship cannot be singled out
quantitatively.

In conclusion, our experiments support results from nu-

merical simulations that the energy spectral density is

generally exponential (linear in log-linear plot). The
components which follow SR symmetry show a slight in-

crease at lower wave numbers, which was observed in the
simulation too. The decay rate (slope) changes smoothly
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with respect to Reynolds number, but it shows a peak
value at R* =22. Above and below this value, it de-
creases slowly, whereas the background level increases
monotonically over the entire range of the Reynolds num-
ber studied here. The variation of energy of each of the
components with SR symmetry shows the same behavior
as that of the decay rate, and a magnitude of back-
ground. The fundamental mode increases monotonically
but the higher modes show sudden changes such as dip or
ramp at R*=22. These results suggest that some new
mode sets in at this R
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FIG. 4. Variation of peak areas of the first five peaks on the
energy spectral density with respect to the reduced Reynolds
number. Sequence from the first to fifth is solid square, open
square, solid diamond, open diamond, and solid triangle.
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