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Fractal-Like Quasienergy Spectrum in the Fermi-Ulam Model
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We prove the existence (as h 0) of the singular continuous ("Cantor-like" ) spectrum for the
Fermi-Ulam model on a torus for a certain phase-space domain and an irrational (diophantine) ratio of
the minimum distance between the walls to the oscillation amplitude of the moving wall. Varied
scenario of the stabilizing and destabilizing spectral transitions are observed in the limit of vanishing
Planck's constant, and their relation with the qualitative changes in the quasienergy eigenstates is

brought out.

PACS numbers: 05.45.+b

Classically chaotic behavior and its manifestations has
been a subject of extensive research in recent times [1].
Nonlinear systems driven by an external, time-dependent
perturbation serve as convenient models where such be-
haviors are expected to manifest. Gradually, it is becom-
ing quite clear that classical chaos is almost always ac-
companied by some signature that reveals a similar struc-
ture on a progressively finer scale, i.e., fractal sets [2].
Based on the exact results on a periodically kicked quan-
tum rotator, it was conjectured [3] that the classical
chaotic behavior is reflected (at least partially) in the
singular continuity of the quasienergy spectrum. In view

of the correspondence principle, we call a logical juxtapo-
sition of these statements the Casati-Gutzwiller conjec-
ture.

It is well known that the dynamics behavior of time-
dependent systems is intimately related to the spectral
properties of the evolution operator in the classical (via
difleomorphisms) [4] and the quantal (via, e.g. , Floquet
operator) formalisms [5]. A transition among diflerent
types of spectra [pure point (PP), absolutely continuous
(AC), singular continuous (SC)] of the quantal evolution
operator is interpreted as a "spectral transition" or as an

occurrence of a quantum instability. Some well-known

examples of such instabilities are the Peierls instability
[6] and the subthreshold microwave ionization of hydro-

gen atoms [7]. The most popular model examples of
relevance to us here are the kicked rotator and the
Fermi-Ulam model (or the Fermi accelerator). For the
kicked rotator, it was rigorously proven that for a generic
choice of a driving potential, there does exist a continuous
component in the quasienergy spectrum [8]. However, it

was not clear whether this is AC or SC; also there
remained the difficulty of quantifying the condition of
genericity. For the kicked rotator subjected to a separ-
able, rank one perturbation (introduced in Ref. [9]), it

was proven that the quasienergy spectrum is purely singu-
larly continuous [10] under certain conditions. Noting
that the SC spectrum resides on a Cantor-like set, it is of
utmost importance to prove its existence rigorously in or-
der to avoid the uncontrollable numerical errors that des-
troy the nonrecurrent behavior, yielding to false quasi-

periodicity.
Diffusive growth of the momentum and phase was

shown in the kicked rotator (KR) [11,12] and the
Fermi-Ulam model (FUM) [13], respectively, indicating
that difl'usion (continuous spectrum) [14] is a hallmark of
chaos (rigorously speaking, a continuous spectrum simply
implies weak mixing). Moreover, both these models were
mapped onto the Lloyd model of disordered solids in an
infinite [15] and a finite [13] lattice of one dimension.
This implies the localization of quasienergy eigenstates,
suppressing thereby the classically weak-mixing behavior.
These studies present the following picture: up to a time,

(break time), the quantal system mimics (pseudo-)
diffusive dynamics where the wave packet keeps spread-
ing and the mean-square phase or momentum increases
linearly with kicks, after which the manifestly quasi-
periodic motion sets in. Following Chirikov [16], this
phenomenon is termed as a finite-time statistical relaxa-
tion in the discrete spectrum. Let us interpret this
change in the dynamical behavior in terms of changes in

the nature of the spectrum of the evolution operator.
Evolution of a kicked system between two successive
kicks is governed by the Floquet operator, F. For larger
times, the evolution is governed by the evolution operator,
U=F". Thus, although the Floquet operator is time in-

dependent, the evolution operator is time dependent. By
Ruelle's argument [14], pseudodiffusive dynamics corre-
sponds to a continuous spectrum. On the other hand,
quasiperiodic dynamics is related to a PP spectrum. We
see, therefore, that a change in dynamics is associated
with a qualitative change in the nature of the quasienergy
spectrum. Quantum mechanically, for a different poten-
tial in the FUM, it was shown that the h, 3 statistic goes
from I/15 (Poisson) to (x inl =0.007. . . ) [Gaussian
orthogonal ensemble (GOE)1, I being the length of the
interval on which the spectral average is computed, as the
coupling goes from weak to strong, i.e. , as the parameter
4/Are increases [17]. The Schrodinger equation for the
Fermi accelerator (i.e. , with Dirichlet boundary condi-
tions at the walls) was treated [181 wherein it turned out
that the classical limit of the quantum system is just the
cl assica1 Ferm i accelerator for on ly those values of
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momentum that correspond to the stable islands in the
stochastic sea of the divided phase space. It is worth not-
ing that the Fermi accelerator [19] can be mapped exact-
ly on the time-dependent harmonic oscillator confined be-
tween two stationary walls using the generalized canoni-
cal transformations. For this confined oscillator, an exact
propagator has been derived and it was shown that the
Lewis invariant breaks down [20].

In this Letter, we investigate the nature of the spec-
trum of the evolution operator with some conditions relat-
ed to irrationality of relevant parameters in the FUM. In
particular, our aim is to arrive at a rigorously proven
statement about the FUM on a torus in view of the
Casati-Gutzwiller conjecture. In the FUM [21], a parti-
cle of mass (m set to unity) moves between two infinitely
massive walls, one of which is oscillating at a speed,
V„„.ll(t) which is a periodic sawtooth function. The wall
oscillation period is T and the maximum speed of the wall
is Vp/4. The speed of the particle is denoted by v which is

measured in terms of the dimensionless variable, u =4v/
Vo. The time t is measured in terms of the dimensionless
variable p=[t/Tj where j j represents the fractional
part. In the considerations addressed in this Letter, we
shall put the FUM on the torus, the domains of p and u

being [——,', —,
' ] and (l,e], e being exponential of unity.

The minimum distance between the walls is I and the am-
plitude of the moving wall is a. As the particle moves,
it collides elastically with the walls alternatively (assum-
ing v )) Vp/4). Depending upon whether p 6 (0, —, ]
[[——,',0)j, the particle gains (loses) in speed. On an

average, the particle accelerates with collisions. The
speed and the phase of the particle after (n+1)th col-
lision, u„+l and p„+l, respectively, can be expressed in

terms of u„and p„by [22]

V(u) =g V„exp(i7 „u),

1 e

Pn+l =P n+M/ut„+l& modl,

H(t'ai, u) =ale+ V(u) g 6(t —n), (2)

a =Sa/I and V(u) =In(I/u)+ (e —1) '. Since a ((l,
tt E [0, 1]. For our purpose, we choose a to be an irra-
tional, diophantine number of order cT (cr~ 2), i.e. , there
exists y&0 such that ~a —

p/q~ ~ yq for all p/q be-
longing to the set of rational numbers. If F(a) is the Flo-
quet operator and itt(u) is a wave function satisfying

F(a)e(u ) =exp[i V(u) ] itt(u —ra), (3)

where I =e —(I +8), 8, however small, is a positive
definite number. Since the FUM is on a torus, it trivially
follows that the eigenvalues of P are 2trnh/I (=X„)
where n = —n ,„, . . . , O, . . . , n ,„; n,„=I /..4trt't (since
p 6 [—z, —,

' ]). It must be noted that in the semiclassical
limit (ltt 0) the number n .„will increase ( ~).
Within the semiclassical approximation (i.e. , letting n
tend to infinity, and setting h to unity for convenience),
one can verify that

(4)

tin+i tin+ lion ~

where M = I/16a. It was shown [19] that this map exhib-
its chaotic behavior in the (p, u) plane when u & dM/2,
and, there exist smooth invariant curves when u & dM/2.

It is evident from (I) that p and u are canonically con-
jugate phase space variables. As linear operators, they
satisfy the commutation relation. With a description
where the Hamiltonian is quadratic in p [13], one can
prove that (1) with (P, u) replaced by (P, u) are just the
discrete-time Heisenberg equations. Since we are in-
terested in analyzing the nature of the spectrum, it is con-
venient to write the Hamiltonian as

Vp=I ' du V(u) =0 as 6 0 (recall that u E (l,e]) .~ i+b

The Fourier coefficients, V„, can be expressed as

V„=(I k„) ([—sin(X„e)+Ssin[k„(1+6)]+si(X„e)—si[k„(1+6')]+I 'sin4. „e)—I 'sin[k„(1+6)]j

+i [ —cos(A.„e)+6cos[l„(1+6)]+ci(X„e)—cia,„(1+6)]+I 'cos(k„e) —I 'cos[k„(1+8)j), (5)

ci(x) =—g OO
P

OO

dt t 'cost, si(x) = — dt t 'sint .~x &x

(6)

Notice that, as x ~, ci(x) and si(x) tend to zero.
Since the sequence [V„j is convergent, it can be shown
that

0(liminf(vn(' " =Iimsup(vn[' "
I

InI- InI-
(7)

w here ci(x) and si(x) are cosine and sine integrals
defined by [23] as 6 0 and n „. „ increases. Furthermore, let us define

the function

L(a) =lim sup ~k„)
' ln[~csc(I aX„/2) (] .

In I-
It should be noted that L(tt) is zero for the set of a's with
full Lebesque measure as it contains the diophantine
numbers, and, L(tt) is infinite for the set of tt's that is
dense G~ set in R. In the present case, it is quite clear
that L(a) is greater than zero owing to the condition on
a. Equation (7) and positivity of L(tx) enables us to use
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Iiminr/V ' g 1&e., lF"le &I'=O
n=0

(9)

for all m E Z: where e =exp(i) u). This implies that
the pure point spectrum is empty [25]. Hence, the dy-
namics is not quasiperiodic.

Moreover, since the quantity

r var(v) =„„,Idv/duldu & I, (I o)

we can apply Bellissard's theorem [5]. We know that

n —
1

F"tlt(u) =exp ir g V(u —rtzl) fit(u —rttX„) .
l=O

Let p/q be a rational approximant of a such that

la —p/ql ~ q

Then, it can be shown that

Iim sup l&v IF'I y&I I
—r Var(V» O.

(12)

(13)

In view of (10), it follows that the absolutely continuous

spectrum is empty. Combining this result with the fact
proven above about the absence of the pure point spec-
trum, it is established [26] that the Floquet operator, F,
has a purely singularly continuous spectrum [27]. Also,
it follows that the spectrum of the evolution operator,
U =F", is purely singularly continuous. Let us recall that
we have shown this result only in the semiclassical limit.

As mentioned above [13], from the classical calcula-
tions, it is clear that the diffeomorphism governing the
Hamiltonian flow in this system possesses an absolutely
continuous spectrum. This trend is reflected in the quan-
tal domains in the continuous spectrum of the Floquet
operator up to the time, t*. Because of the analogy that
this system shares with the localization problem, it is
clear that after the time, t*, the spectrum ceases to be
continuous. A transition in the spectrum from purely
continuous to pure point is an example of a "stabilizing
spectral transition" (SST). On the other hand, if a is an
irrational (Liouville) number, we get a stability result in

the quantal domain. Finally, if a is a diophantine num-

ber, then it follows from our arguments that the quasien-
ergy spectrum is SC in the semiclassical region. It must
be noted at this juncture that an analytical result of this
nature has an enhanced value as the SC spectrum being
such a fragile object that numerically one can easily ob-
tain all signatures of a PP spectrum rather spuriously.
Thus, in a rather subtle manner, there is persistence of
weak mixing (akin to pseudodiffusive dynamics) in semi-
classical domain —an instability statement we call a "des-
tabilizing spectral transition" (DST).

In the limit of the Planck's constant approaching zero,
we are facing here a novel scenario: up to a time, t*

the Ruelle-Amrein-Georgescu-Enss (RAGE) theorem
[24]. That is, with these conditions, it can be shown that

JV —I

(= M [13]), the spectrum of the evolution operator is
continuous for all values of h, followed by a transition
from SST to DST. It is well known that the recurrent
and resonance patterns are connected to localized and ex-
tended states in the Anderson (or Lloyd) model. Also, it
is known that exotic states in the Anderson (or Lloyd)
model correspond to a singular continuous spectrum [28],
and that these states are related to nonrecurrent, nonos-
cillatory dynamical patterns. Thus, as A 0, the quali-
tative behavior of the states undergoes a transition from
extended to localized to exotic.

To summarize, there are enough numerical results to
suggest that quantum mechanics appears to be more
stable and predictable than classical mechanics. Also
there is overwhelming evidence for the existence of frac-
tal sets [29] in the classically nonintegrable, nonlinear
systems. We have shown here that a persistence of weak
mixing in the quantal domain is reflected in the singular
continuity of the quasienergy spectrum. That this finding
coexists with the quantal suppression of pseudodiffusion
presents a puzzling and an interesting dichotomy in our
understanding of a theory of spectral transitions. We be-
lieve, based on the results of the kicked rotator and the
Fermi-Ulam model (both the systems being examples of
generic chaotic dynamical systems), that the Casati-
Gutzwiller conjecture is generally valid for periodically
driven (1+1)-dimensional, nonlinear systems. Work on
other systems is currently in progress; however, detailed
discussions and rigorous proofs will appear shortly
[2o,3o].
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