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Quantum Freezing of the Fractional Quantum Hall Liquid
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We compare the free energy computed from the ground state energy and low-lying excitations of
the 2D Wigner solid and the fractional quantum Hall liquid, at magnetic filling factors of v = 1/3
and 1/5, to show that there is an experimentally accessible region of density and magnetic field
where the fractional quantum Hall liquid freezes as the temperature is raised and then melts again
at higher temperatures.

PACS numbers: 73.40.Hm, 73.20.Dx

The transition from the fractional quantum Hall state,
the so-called Laughlin liquid (LL), to the electron crystal
state, the so-called Wigner solid (WS), has been under
active investigation for some time now [1—6]. The phase
boundary between these two fascinating quantum states
of matter is in principle extremely interesting and com-
plex. Moreover, it now appears that much of the inter-
esting parameter region can be reached in experimentally
accessible samples.

For a 2D electron system consisting of carriers of mass
m' immersed in a dielectric medium e with a density
n = aa2, the phase boundary between the LL and the
WS, in the absence of impurities, is characterized by
three dimensionless parameters. The first is the filling
factor v = 2E /a2—:2E~/her, where E = (hc/eB)i/,
E~ = 5 /rn'a, and u, = eB/m'c. The second is the
dimensionless density r, = a/az where a~ = 5 e/rn'e .
In the regime where r, is small (high density) it is con-
venient to think of r, as equivalent to a Landau level
mixing parameter A:—(e /ea)/hw, = r, v/2. Finally we
need a dimensionless temperature I'—:(e%a)/k~T.

Most microscopic theoretical investigations of the
phase boundary between LL and WS have focused on
the I' = 0, r, = 0 limits [7, 8]. Very recently Price, Platz-
man, and He [9] have included density into a theory of
the LL. They chose a variational wave function which
was of the form of a Laughlin wave function multiplied
by a Jastrow factor with one variational parameter and
computed the energy of the liquid as a function of den-
sity. The Jastrow factor mixes in higher Landau levels,
improving the liquid energy by making the LL look more
like a solid.

The energy of this new correlated state was computed
and compared directly with the energy of a WS at the
same density. The energy of the solid was obtained from
the recent variational calculation of Zhu and Louie [10].
The results of the calculation gave a good estimate of the
critical density r,' at which the system went from LL to
WS. At v = 1/5, for example, the computed crossover
was at r,' = 15 in the absence of impurities, and at

v = 1/3, the crossover was found to be at r,' —22. A
rough estimate of the effects of impurities, since impuri-
ties favor the solid, suggested that the solid was shifted
down in energy by an amount proportional to 1/r, and
that the new value of r,' for realistic samples at, for ex-
ample, v = 1/5 was r,' —12. Since there is very lit-
tle difference in energy between the liquid and solid at
v = 1/5, impurities may shift the crossover point sig-
nificantly. At v = 1/3, however, the difFerence is larger
and impurities were seen to shift r,' by a smaller amount.
Since good samples are readily available in this density
range, experiments near such density-driven transitions
are possible.

In this Letter we will quantitatively extend the analysis
of the LL-WS phase boundary to finite temperatures in
the neighborhood of the critical density r, . The analysis
will show that it should be possible to observe a new and
rather interesting phase transition which occurs on the
high density side (r, ( r, ) of the critical density. In
particular the LL will freeze as the temperature is raised
and then melt at a somewhat higher temperature. We
will show that the freezing of the LL with an increase in
temperature is physically similar to the behavior of liquid

He near the minimum pressure required to solidify it
[11].

In the absence of impurities, the WS for v & 1/3 can to
a very good approximation be thought of as a harmonic
solid with slight corrections due to anharmonic and ex-
change efFects [12]. The picture becomes more accurate
as v decreases. For such a harmonic solid the free energy
per particle is given by

F =E (r,)+T) ln(1 —e " / ),

where ioA, (o = +) are the phonon frequencies. Here
E s(r, ) is the energy per particle computed, for exam-
ple, by Zhu and Louie [10]. We evaluate the second term
above by averaging over the Brillioun zone by the method
of Cunningham [13], using phonon spectra calculated in
the same way as Bonsall and Maradudin [14]. At very
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low temperatures the excitation spectrum is dominated
by the low-lying shear mode

= 0.526
~

——
~
(ka) / .

/' v e2/sl
(Tq 2QB )

In this case

A(k) = + 4R.(k —k~)2
2fAR

(4)

At low temperatures (T « 4R) we need only consider
the lowest-lying excitations.

Both the roton gap and the effective mass in the single-
mode approximation depend only on the structure factor
in the ground state, and both these quantities have been
computed in the r, = 0 (lowest Landau level) limit. Of
course this low-lying branch will be density dependent;
however, we will argue that the density dependence is
small.

The single-mode approximation can be extended to ar-
bitrary density by assuming that the magnetoroton wave
function is

r, 2a~FWS EWS+Q 7Q1
~

—' +
I

T
( v e2/s)

By now it is generally agreed that the excitation spec-
trum of the LL at a Gxed density is very accurately de-
scribed by the so-called single-mode approximation of
Ref. [15]. More specifically, at infinite densities, the low-

lying ex'citation is a magnetoroton branch which has a
gap A~ at some wave vector k~ n / . This means
that the free energy of the liquid will deviate exponen-
tially from its zero temperature value. Thus it is clear
that there is some regime where the more energetically
favored liquid freezes as the temperature increases, due
to the decrease in free energy (higher entropy) of the
solid. This freezing happens close enough to r,' that the
energy difference between liquid and solid is small com-
pared to the gap in the liquid excitation spectrum. This
is always possible assuming only that there is a real Grst-
order phase transition between LL and WS.

The excitations in the neighborhood of kR are well

approximated by

In Eqs. (6) and (7) we have separated the density oper-
ator into factors involving inter-Landau-level transitions
A, (k) and taken the diagonal part so that A~(k) does not
change the Landau-level number, and a part B,(k) which
explicitly involves intra-Landau-level terms. Here a, and
6, are the standard magnetic Geld harmonic oscillator
ladder operators [16]. The a s are the inter-Landau-level
operators and the b, 's are the intra-Landau-level opera-
tors.

To compute the energy of the states defined by Eq.
(5) is difficult. However, when the quantity 6
AEK E /h~, && 1, i.e. , the number of particles in higher
Landau'levels is small, then it is possible to show to low-

est order in 6 that the density dependent roton spectrum
has the same analytic form as given previously,

where

f(k)
s(k)

' (9)

e
—(Ik I'+

i a I') /2 (e(q" k —k" q) /2 1)
(2vr)2 q

x [s(q) —s(k + q)],
(10)

s(k) = s(k) —(1 —e 'I / ),

S(k) =.I "I'/'s(k),

and s(k) = ~~(0~ptkpk~0) is the new density dependent
structure factor. For the variational wave function of [9],
Fig. 1 shows that 6 « 1 is a good approximation. We
find, for example, that near v = 1/3 at r, = 20 that AR
is softened about 20%. For the purpose of our semiquan-
titative argument such changes are unimportant.

Assuming only small changes in the roton spectrum as
a function of density and that only noninteracting rotons
in the neighborhood of the minimum contribute (T «
AR), the free energy per particle of the liquid is

1 =
&k = ~&klQ)

where

Pk ——) A, (k)B,(k).

(5)
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0.06-

0.05

0.04

0.03

0.02 .

Here k = k +sky,

AD(k) (
—k"at/deka, /v 2) (7)

0.01

0 10 15

rs

20 30

and

B (k)
ik'b, /hei—kb, /v 2

FIG. 1. The excess kinetic energy 6 = EK E, /her for the
liquid phase. Near the melting point at v = 1/5, 6 = 0.01,
and at v = 1/3, b —0.05.
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FIG. 2. The liquid-solid phase boundary at v = 1/3,
where m = 0.3m„ the mass of the bare electron. Impurity
e8'ects are small on the scale of this plot.

FIG. 3. The liquid-solid phase boundary at v = 1/5,
where m* = 0.3m, . Impurity effects are not shown in this
plot.
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are significant, can only be estimated.
The authors would like to thank A. MacDonald and

Song He for numerous helpful discussions.

Setting the two free energies F and F equal gives
us the phase boundary.

In Fig. 2 we have plotted this phase boundary for a
hole sample with effective mass m' = 0.3m, at a Ailing
factor of v = 1/3. The phase boundary at v = 1/3
behaves as expected: there is a temperature region for
r, & r,' where the liquid is stable at T = 0. The liquid
freezes, in this case at a temperature of 1 K, followed

by a magnetoroton entropy triggered melting at 3 K.
The effects of impurities will shift the boundary to the
left by a small amount in r„and may also push the top
of the phase boundary down somewhat. At v = 1/5,
shown in Fig. 3, impurities play a much larger role, since
the energy difference between liquid and solid is much
smaller, but we would expect the general features of the
phase diagram to remain; that is, below r,', the system
remains a liquid at all temperatures, well above r,' the
system is a solid at low temperatures, melting at some
point probably lower than shown in Fig. 3, and just above
r,' a narrow reentrant regime exists.

This calculation, which is based on very simple physi-
cal properties of the LL and WS phases, shows how quan-
tum freezing comes about in this system. The actual tem-
peratures and densities are within an experimentally ac-
cessible range. However, the effects of impurities, which
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