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A model of a local orbital coupled through repulsive interactions to both the hybridizing and
the screening channels of a conduction band is solved by Wilson's renormalization group method.
At particle-hole symmetry we find non-Fermi-liquid lines of critical points when the interaction
in the screening channel is above a critical value. Away from particle-hole symmetry the system
displays two stable Fermi-liquid Axed points of different symmetries, separated by a non-Fermi-liquid
quantum critical point, in the mixed-valence regime. The behavior in the vicinity of this point is
consistent with the marginal Fermi-liquid hypothesis.
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The experimental results [1] on the Cu-0-based met-
als have raised two important related issues: what is the
description of the normal state, which does not appear
to fit into the Landau Fermi-liquid phenomenology, and
what is the mechanism responsible for the superconduc-
tive pairing. Here we investigate the low-energy prop-
erties of a model relevant to the physics of the Cu-0
materials, which sheds light on both issues.

A general description of magnetic impurities in metals
was given by Friedel [2] and later by Anderson [3] in a
model with local interactions. The Anderson Hamilto-
nian for a magnetic impurity in a metal and the related
Kondo Hamiltonian have been exactly solved by a variety
of methods. At low energies io « T~ (T~ is the Kondo
temperature) the excitation spectrum of these models is
that of a local Fermi liquid [4,5]. We show that a more
general model displays local non-Fermi-liquid properties
and local pairing interactions over a range of parameters.
This generalization is the single impurity version of one
of the multiband models proposed to describe the physics
of the Cu-0 compounds [6], in the same sense in which
the Anderson model is the single impurity version of the
single-band Hubbard model.

Our model is specified by the Hamiltonian

H = ektck~tck~& + ed, ng + UndTndg
k, o., r,

+t) (dtcg p+ H.c.)
k, cr

+ ) Vi, i, i (n~ —1) ) c„, ,cl,~i —1
kk'i k ~ )

The first four terms in Eq. (1) represent the usual An-
derson model while the last term takes into account the
finite-range interactions between the local "d orbital" and
electrons in the conduction band. These interactions are
expanded in appropriate symmetry channels L about the
impurity site [7]. As required by symmetry, the non-

degenerate "d orbital" hybridizes only with one channel,
l = 0, hereafter called the "hybridizing" channel. All
other channels will be referred to as "screening" chan-
nels. The chemical potential is set to zero; for eg = —U/2
the Hamiltonian is particle-hole symmetric. The spinless
version of this model, which is just the generalized reso-
nant level model, has recently been discussed in [8] and
displays a (Kosterlitz-Thouless) transition from a Fermi-
liquid to a non-Fermi-liquid state as the interaction pa-
rameters are varied.

We have solved the model of Eq. (1) by the numerical
renormalization group (NRG) method, devised by Wilson
[4] in the course of his solution of the Kondo problem and
used subsequently in the study of the Anderson Hamil-
tonian [9] and several other problems. Wilson's method
solves the recursion relation for the discretized N-th it-
eration Hamiltonian, H~.

IIiv+) (f~~,~ifnr~t+H c))

where A is the step size of the logarithmic discretization
of the energy. fp i is the Wannier orbital for the conduc-
tion electrons in the t-th channel at the impurity site;
tv i are mutually orthogonal orbitals peaking further
and further away from the impurity [4]. We have con-
sidered Ukk t = U~ so that the many-body interactions
are present only in Hp. Since this simplification does not
lead to a change of symmetry, we expect no qualitative
differences in the results.

At the zeroth iteration, the Hamiltonian is

Ho ——
A+1 cdnd + Undynd, g

~ t ) (dt fp p + H.c.)

+) 2gt(ng —1)(fp~ i fp i
—2)
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Here, g~ = pVj are dimensionless coupling constants and

p is the one-electron density of states at the Fermi level
which we take to be the same in all conduction electron
channels, and t defines the bare hybridization width pa-
rameter, I' = vrpt2.

First we consider the particle-hole symmetric case,
s& = —U/2, and include, in addition to the hybridizing
channel t = 0, a single spintess screening channel t = 1.
For simplicity, we describe the results for interaction Vo

in the t = 0 channel taken equal to zero; qualitatively
similar results have also been obtained without these re-
strictions.

For Vi small compared to the "gap, " U/2, the spectrum
is characteristic of the unstable local moment fixed point
at low iterations (N + 7) followed at large N by the
strong-coupling (Kondo efFect) fixed point. The strong-
coupling fixed point corresponds to a renormalized value
of the hybridization width parameter I' = oo (or vr/2

phase shift per spin channel at the impurity) and a pair
of leading irrelevant operators, which are characterized
by the energy scale T~ [4,9]. The asymptotic low-energy

properties are those of a local Fermi liquid.
With increasing Vj, the first effect is the renormaliza-

tion of the Kondo temperature T~ upwards, which can be
seen on closer examination to be due to the renormaliza-
tion of U downwards. Eventually, the impurity behaves
as an effective attractive center, with the charge 0 and 2
states favored over the charge 1 state. The flow after a
few iterations is the same as in the Anderson model with
U ( 0. With U,s ( 0 and U,g/I' ) vr, the problem at
particle-hole symmetry transforms to that of a Kondo ef-
fect in a pseudo-spin (w) channel, with ~, denoting charge
states 0 and 2, and ~+ fiipping between these states [7].

As Vi is further increased, the Kondo temperature
in the pseudo-spin channel is rapidly depressed. For
Vj ( V„ the flow is, however, still to the strong-coupling
fixed point (free Fermi fixed point with phase shifts vr/2

in the hyb'ridization channel and 0 in the screening chan-
nel) and therefore to Fermi-liquid behavior at low en-
ergies. The asymptotic low-energy spectra about the
strong-coupling fixed point are described by four lead-
ing irrelevant operators:

A w i ) fi~p fz~p + H.c. + tD2

)
+ ~4 )

fluoro

f1~0 I fplfo

The depression of T~ with Vi can be studied through
I

the variation of the m, with gq, obtained by fitting the
low-energy spectra. We find that all m, T~ have an
essential singularity at gi —+ gi, of the form

e~~~ -» ~ (5)
where the exponent a. is found numerically to be close
to 1 and gq, and d depend on the values of the initial
parameters.

This behavior is analogous to that found in the transi-
tion from the antiferromagnetic to ferromagnetic Kondo
effect [10], as well as in the multichannel spinless model

[8]; ip, is reminiscent of the correlation length at the
Kosterlitz-Thouless transition. Indeed, for Vi ) Vj„a
line of critical points is found.

Our results can be understood from the fixed point
Hamiltonians for gi ) gi, . As distinct from the fixed
point Hamiltonian in the Kondo problem, these fixed
points are characterized by the full kinetic energy E~
(no exclusion of the impurity site, i.e. , no vr/2 phase shift)
and finite interactions g,

* in the hybridizing and screening
channels:

II' = E~+go(nz —1) ) fot ofp p
—1

+gi (ng —1)(foi foi —
~ ) (6)

with only nd = 0, 2 allowed. Note that there is zero hy-
bridization at the fixed point, so spectra with different nd,

are decoupled. g,*. are determined by fitting the asymp-

() fi~ofi~o 1 + ~s(foif» + H c )

2)

totic spectra. The stability of this fixed point is studied
by considering the leading operator

(foyofogodldy + H.c.), (7)

which couples the ng = 0 and nd, = 2 sectors, of H'.
To study the dimensionality of 0, consider II„*„oand
H„*„2, which are H* in the nd = 0 and nd ——2 sec-
tors, respectively. Because H„*„o is a sum of three

commuting Hamiltonians, its eigenstates can be writ-
ten as In, = 0& = I~T&lj &&lrnl&IA), where IA& denotes
the empty d orbital, Iio) represents excited states of the
Fermi sea of spin o. electrons in the hybridizing chan-
nel, and Iml) the excited states of the Fermi sea in the
screening channel. Similarly, the ground state of H„*„

is ln~ = 2& = IOT& 10l& 10»dId~~ ln& The matrix elements
of 0 in the fixed point basis can then be easily evaluated
following considerations analogous to those used in the
x-ray edge problem [ll]:

{ng = 0[0[nd, = 2) A (8)

where the anomalous dimension of the operator 0, o. =
2b'o/x —(6p jvr) —

2 (bi/7t), is written in terms of the
phase shifts at the fixed point, h~ = tan i (7rg~*/Ap) with

Therefore, g* = gq, corresponds to
n = 0, where 0 is marginal, while for g* ) gi„n & 0
and 0 becomes an irrelevant operator. The form (8)
has also been verified by fitting the low-lying numerical
eigenvalues and is consistent with the results of the multi-
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(10)

channel spinless model [8].
For n & 0 the singular scale invariant low energy be-

havior of various correlation functions can be estimated
as in Ref. [8]. The (pair) susceptibility behaves like

T ~ + ~, while the contribution to the resistivity of
the conduction electrons due to scattering at the impu-
rity site is cp + c&T2~, where the c's are constants.

We next consider the particle-hole asymmetric prob-
lem. Especially interesting for application to the copper-
oxide problem is the mixed-valence regime [12], where
n~ fluctuates between 0 and 1 (or 1 and 2) in the
ground state (corresponding to Cu+ and Cu++ states,
respectively). For such cases, U is taken as oo. It is also
convenient to rewrite the interaction terms (proportional
to Uj) in Eq. (1) in the form

( 1)t).Vi
~

ri~ ——
I ) c„, ,ci, (

—12)("') (9)

so that Vt do not aKect the relative positions of the nd = 0
and nd = 1 states. Mixed-valence behavior then occurs
for ~zg~ & I', U )) I'. Calculations below report the re-
sults for the case of a single 8pinle88 screening channel
/ = 1.

For sd )) zg, (—+ 0 for I' ~ 0), the nd, = 0 state is fa-
vored in the low-energy regime. For Vt = 0, the Hamilto-
nian Bows directly from the high-temperature fixed point
to the "frozen impurity" fixed point [9] at T —+ 0, around
which properties are those of a local Fermi liquid. For
Vj )) ~s'g~, I', the NRG calculations also lead to a local
Fermi-liquid state, with charge in the screening channel
(Qi) =

2 (phase shift —vr/2 in the screening channel),
as may be deduced from Eq. (9). Lack of particle-hole
symmetry leads to potential scattering terms in the hy-
bridizing and screening channels at the fixed point:

) .fo.ofo o —1 + ~s(foifoi —1/2).
(

)
I ow-energy properties are determined by an efFective

Hamiltonian of the form of Eq. (6).
The opposite case, eg (( eg„ favors nd, = 1 in the

low-energy regime. For V~ ——0, the Hamiltonian Bows
from the high-temperature fixed point to a local moment
fixed point characterized by a doubly degenerate set of
states, which is in turn (marginally) unstable to a non-
degenerate Fermi-liquid fixed point [9]. When V~ )) I,
a Fermi-liquid fixed point is again found at T ~ 0, but
now with Qi = —1/2 (phase shift vr/2 in the screening
channel) and correspondingly, ivs has the opposite sign
from the previous case. The symmetry of the ground
state for eg & eg, is therefore diferent from that at eg (
ed„so we might anticipate a quantum critical point at
z~ = z~, in the mixed-valence regime I' ) ~s~~, where nd,

fluctuates between 0 and 1.
The mixed-valence regime is characterized by a high-

temperature magnetic susceptibility y = 6T and, for
Vj ——0, a local Fermi-liquid low-temperature state in-
distinguishable from that found in the conventional An-

derson model [9]. On the other hand, for Vi above a
critical value we find an unstable critical point. This
critical point is signaled by the vanishing of the poten-
tial scattering parameter ups of Eq. (10) and simulta-
neously a divergence of the hopping parameter in the
screening channel, tu3, and the interaction coeKcient tu4
of Eq. (5), as sg ~ cg, . These coincide with (Qi) ~ 0
and a diverging charge susceptibility y . Asymptotically
near the critical point, the low-energy spectrum is dou-
bly degenerate with Qi = +I/2 (and the hybridizing
channel has the vr/4 phase shift of the mixed-valence
configuration). Scattering between these two manifolds
of eigenstates scales to zero at zero energy separation
due to orthogonality, leading to the divergence of y' of
the form y' ~sg —sg,

~

", with r = 1.8 + 0.2. This
behavior is illustrated in Fig. 1 which also shows that
(Qi) ~z~ —sg, ~, with 6 —2.7. We expect that, as in
the particle-hole symmetric model, the transverse charge
(i.e. , pairing) susceptibility is equally singular.

Actually, for ~e~ —ed,
~

+ 10, y~ saturates in our cal-
culation due, we believe, to the truncations in the NRG
procedure. For e~ ) eg„ the spin susceptibility, y~, has
the same form as y~, with a similar saturation. However,
by contrast with y~, g grows for eg eg, (i.e., on the
nd = 1 side), as a result of the sharp decrease in the
Kondo temperature with decreasing eg.

The structure of our problem appears related to that
of the two-channel single-impurity [13] and the two-
impurity [14] Kondo problems. In each case two stable
Fermi-liquid fixed points of diKerent symmetries are sep-
arated by a non-Fermi-liquid critical point. In fact, in the
two-channel problem conformal field theory yields v = 2

[15].
As near any quantum critical point the nature of the

fluctuations in the critical regime of the mixed-valence
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FIG. 1. The charge susceptibility and the charge in the
screening channel as a function of eg —zg, .
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(Qi)i + (Qo)i = Qt (12)

The latter yields a family of smooth solutions for (Qi) as
a function of eq —p depending on Qt. For a fixed eg and
Qt, due to the rapid change of (Qi) close to ed —p = Edc

in the single-impurity problem (recall (Qi) ]ed —ed, ]
~ ),

a self-consistent lattice solution exists for a range of Qt
around a critical value, Q«. (This procedure is the
same as used in determining the pressure-volume rela-

quantum critical point is characterized by "lengths" (
(ed —eg, )

" and (T T ~'. By general finite size scaling
arguments [16], in the critical regime (T « (, i.e. , T »
]e'g —ed,

~

', the local fiuctuation spectra must take the
form

X,",.(~) - l~l"'" +&,-(~/T) sgn(~) (»)
Quite generally, for io « T one expects y"

implying that F (]co~/T) "; in turn, this leads to
a static susceptibility, y' (0) T» . In the regime» T ~', Fermi-liquid behavior, y' (0)
const, is expected, consistent with our findings. On the
other hand, at the highest temperatures pp T
We are unable to demarcate in our numerical results the
quantum critical region intermediate between the local-
moment and the Fermi-liquid regime, and thus are un-

able to determine the value of p, . However, by a sim-

ple scaling argument [17] v = 2 corresponds to y'(~o)
log[max(~io~, T)]sgnio (i.e. , p = 0). This is the marginal-
Fermi-liquid spectrum [18], in terms of which the anoma-
lous normal state properties of the high-T, metals have
been discussed.

Finally, we briefly discuss the relevance of the present
calculation to the Cu-0 lattice problem. This raises two
important questions: First, are there further singulari-
ties introduced by the lattice or effects which otherwise
remove the singularities discovered in the single-impurity
problem? Second, what is the range of parameters over
which the properties of the lattice are controlled by the
single-impurity critical point?

An approximate treatment of the quantum critical
point [19] and mean-field extensions to the lattice lead to
the conclusion that the largest low-energy cutoff of the
singularities discussed here occurs at the coherence tem-
perature, T, h, of the local pairing fluctuations between
impurities, which determines the onset of superconduct-
ing order. For the purpose of discussing the normal state
above T,oh we may then regard the lattice as a periodic
arrangement of "impurities" in contact with a reservoir
of electrons. (This is consistent with the marginal-Fermi-
liquid hypothesis for the normal state of the high-T, ma-
terials, which assumes that the singularities are q inde-
pendent, i.e. , local in space. ) The chemical potential, p,
is then determined by using the self-consistent solution of
(Qi) as a function of e'~ —ti as found here, in conjunction
with the condition of a Axed average total charge for the
lattice, Qt..

tion near the critical point of a gas-liquid transition. )
The crossover temperature from the quantum critical
regime to the Fermi-liquid regime in the lattice can then
be estimated from T~ —I'[]Qt —Q«]/Q«]s ' .With
z & 1 and taking I' as large as 104 K, T ( 1 K for

]Qt —Q«~/Q«0. 1. These ideas can be checked by
using a recently developed RG method for embedding
impurity models in an infinite dimensional lattice [20].
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