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The question of how thermal noise should be incorporated in the continuum equations of solidification
in a way which is consistent with both bulk and interfacial equilibrium fluctuations is investigated. The
proper Langevin formalism which accomplishes this task is found to consist of the usual bulk forces,
which remain unaA'ected by the presence of a two-phase boundary, and an extra stochastic force on the
interface associated with its kinetics. The relevance of this force in the context of pattern formation is
exam i ned.
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Perhaps one of the most remarkable results that has
emerged from theoretical studies of dendritic growth [1]
is the fact that a tiny noise source can potentially give
rise to the pronounced sidebranching activity observed ex-
perimentally [2,3]. At present, the precise physical origin
of this noise or even its relevance remains uncertain. A
quantitative calculation by Langer [4] has indicated that
thermal noise (i.e., thermodynamic fluctuations) does not
seem large enough to account for the observed sidebranch
amplitude in the experiment of Huang and Glicksman [2]
and, although unlikely, it cannot yet be ruled out that in

fully three-dimensional dendrites the observed noisy side-
branching activity [3] is due to a nonlinear feedback of
the sidebranches on the tip. In contrast, Warren and
Langer [5] have found recently in the context of direc-
tional solidification that thermal noise seems to be of
about the right magnitude to account for the initial wave-

length of a transient cellular structure observed experi-
mentally by Trivedi and Somboonsuk during the forma-
tion of dendritic arrays [6].

Despite the potential importance of thermal noise in

the above examples, and perhaps others yet unexplored, a
rigorous theoretical basis for its incorporation in the basic
continuum equations of solidification [1] has remained
largely lacking. The purpose of the present Letter is to
present a Langevin formalism consistent with both bulk
and interfacial equilibrium fluctuations which provides
this basis. Details of the calculations together with an in-

vestigation of fluctuations in directional solidification will

be presented elsewhere [7]. We only summarize here the
part of our results which pertain to the Langevin formal-
ism and the physical relevance of its constitutive forces.

The present procedure [4,5] used to incorporate fluc-
tuations was first introduced by Cherepanova [8] and

simply consists of adding to the diA'usion equations bulk
Langevin forces, uncorrelated in space and time, chosen
to reproduce the known bulk equilibrium fluctuations of
temperature and concentration in each phase separately.
To present the issues which arise concerning the validity
of this procedure it is simpler to consider the solidification
of a pure substance. For a pure substance with an atomi-
cally rough solid-liquid interface, the equations of solidi-

fication with bulk forces take the form [9]

Tit =DT'hT, —V q'(R, t), v=L, S,
Li„=n [cqDTVTs —ct.DTVTt ]

+n. [ct.q'(p) —csq (p)l,

(3)

where DT and c, denote, respectively, the thermal dif-
f'usivity and specific heat per unit volume of each phase, L
is the latent heat of melting per unit volume, I =TM y/L
is the Gibbs-Thomson coeIcient with y the surface ener-

gy, p is the kinetic coeScient, rc is the interface curva-
ture, i„ is the normal velocity of the interface, and the
bulk forces satisfy

,( „,, DT'ktt T,(R, t )

Cy

(4)

We parametrize the interface by the vector p=xx+yy
+g(r, t)z where r=xx+yy is a two-dimensional vector
in the (x,y) plane and R=xx+yy+zz is the three-di-
mensional position vector. The three- and two-dimen-
sional gradients are denoted, respectively, by V—:B„x

B+~y +czland V& =t), x+ cluny—, and 6 denotes the three-
dimensional Laplacian.

There are two somewhat distinct issues regarding the
validity of the above procedure for incorporating thermal
noise. Both are linked to the presence of a two-phase
boundary. The first issue, pointed out recently in Ref.
[5], has to do with the fact that this procedure implicitly
assumes that the boundary has no eftect on bulk forces.
While this assumption seems at least intuitively correct
for the symmetric case where the two phases have the
same thermodynamic properties (ct. =cs and DT=DT)—in this case bulk fluctuations are independent of the
boundary which simply adjusts its position via Eq. (3)—it is not a priori obvious why it should be correct in the
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with the static fluctuation spectrum
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&BT~ l
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This spectrum is then to be compared with the spectrum
((kg k)„„„obtained from the Langevin formalism. In

more general case where the properties of the two phases
differ. The second issue has to do with the fact that the
interface does not adjust its position instantaneously in

response to bulk fluctuations but via a first-order kinetics
corresponding to the term t„/jtt in Eq. (3). This term is

usually included as a "nonequilibrium correction" to the
Gibbs-Thomson condition. However, this kinetics is al-
ready present in equilibrium and one would strongly ex-
pect a stochastic force, separate from bulk forces, to be
associated with it.

To resolve these issues it becomes necessary to deter-
mine if Eqs. (1)-(4), which, by construction, are con-
sistent with equilibrium bulk fluctuations, are also con-
sistent with equilibrium interfacial fluctuations. We first
recall that fluctuations of the solid-liquid interface on
wavelengths X =2tr/k much larger than some short wave-
length cutoff scale A of a few molecular diameters are
governed by the Gaussian probability distribution

general, to calculate the latter, we have recast Eqs.
(1)-(3) in integral form using the standard Green's func-
tion approach, linearized the resulting integral equations
about a planar interface, and calculated the dynamic
response function by Fourier transform. The static spec-
trum was then obtained using the relation

1
t

(4k( —k)noise 4 &
dru dru d k (gkcq(k'ce')noise r

2

where the Fourier transform is defined by

g(r, t) =(2tr) fdcud ke' "'+

(7)

The first issue raised above can be considered essential-
ly independently from the second by neglecting in a first
step the kinetic term [i.e., by setting p

' =0 in Eq. (3)].
In this case, lengthy calculations [7] for the two-sided
model yield the required fluctuation-dissipation theorem
((kg —k)nojse ((kg —k)equjl, ImPlicit in this result is the
fact that the boundary has no net efTect on the bulk
forces of each phase and that Eqs. (1)-(4) provide the
proper incorporation of thermal noise in the absence of
interfacial kinetics. To address the second issue related
to interfacial kinetics it is simpler to present our results
for the symmetric case where the two phases have the
same thermodynamic properties (with no loss of generali-
ty for the general nonsymmetric case). With the defini-
tions c~ =@I =c, DT=DT=DT, and p '&0, the integral
equation describing the linear response of the interface
takes the form [10]

L t) (r', t') +q, (p) —q,'(p)
c r)t

dz'v' q ( n', c)+„dz' 'qq (R', )c

1 t)((r, t) dt' ", , lr —r'l'
I V~((r, t) —— f' exp" —"[4trDT(t —t')]' ' " 4DT(t t')—

"
z lr —r'I'+~'

d r'exp
4DT (t t')—

Fourier transforming Eqs. (4) and (8) and using Eq. (7)
we obtain, after lengthy manipulations, the result

((kte —k)noise (4k( —k)equjlFB (dok jP ) r

where dp =I c/L is the capillary length, p =pI /DT is a di-
mensionless kinetic coefficient, and

"+"dn 1
Ftt (d pk;p ) =

J Re [ I /g(n )],
it n

g(n) =2dtlk(1+i n/p)(l +i n) ' '+in,

1.0-

0.0

0.6

i (n) = I
—[(I + n ') '"—

I ]/p . (12)
0.4

In the physically relevant limit where p((1, the wave-
length K* =2tr/k* at which the noise-averaged spectrum
is half the equilibrium one [i.e. , Ftt(dpk;p) =

& l can be
shown to take the simple form l*=4 d tr/p p=4trcDT/
(pL). To illustrate these results, we have shown in Fig. 1

a plot of Ftt(dpk;p) calculated by evaluating numerically
the integral in Eq. (10) with p =5 & 10 . The main
point here is that Eqs. (1)-(4) generate interfacial Auc-
tuations which are consistent with equilibrium fluctua-
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FIG. I . Plot of Fct (dok;p ) (solid line) and Fc (dok; p )
(dashed line) for the symmetric model of the solidification of a
pure substance with p =pl /Dr =5x 10
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tions on scales larger than k* but are strongly in error
(drop to zero) on scales smaller than l*. Since situations
can arise where fluctuations on scales smaller than X* can
become selectively amplified by morphological instabili-
ties, it becomes crucial to determine how the Langevin
formalism should be modified in order to reproduce the
correct equilibrium interfacial fluctuations on all scales
(i.e. , all k ((A ').

The necessary modification of the Langevin formalism
consists in adding a stochastic force rt(r, t) with variance

patterns. Without embarking on a detailed calculation
along the line of Ref. [4], a crude estimate of the growth
rate at which this force should become relevant can be
obtained by noting that only interfacial fluctuations of
wavelength larger than the stability length A, s —QDTdo/j
are amplified by morphological instabilities (e.g. , on the
side of needle crystal in the case of sidebranching). Since
the interface force only affects fluctuations of wave-
lengths shorter than X*, the growth rate at which it
should become relevant (obtained by setting A, g —k*) is

then given by v* —p ATM/cDT. The value of p is usual-
ly not precisely known. However, for monoatomic metals
we can use the theoretical estimate of Ref. [11], con-
sistent with a large body of rapid solidification experi-
ment, given by p =VOL/RTrjt, where I is the latent heat
per mole, R the gas constant, and Vg is the speed of
sound in the bulk (typically of order 2000 m/sec in met-
als). This estimate, together with typical material pa-
rameters for monoatomic metals, yields values of k* in

the range of a few hundred nm to 1 pm and ~
* in the

range of several cm/sec to a few m/sec. For these materi-
als, we therefore expect the interface force to be relevant
at large solidification rates. For materials like succinoni-
trile [2] or ammonium bromide [3] where sidebranching
has been well characterized, values of p are not precisely
known but are probably smaller since larger molecules
tend to yield slower interfacial kinetics, in which case»*
will also be smaller (note in particular the p dependence
of j *). However, we do not expect v* to be small enough
for the interface force to play a significant role in the low
velocity experiment of Huang and Glicksman [2] to
which Langer's calculation [4] applies.

In summary, we have presented a self-consistent Lan-
gevin formalism which provides a rigorous theoretical
basis to incorporate thermal noise in the basic continuum
equations of solidification. It differs from that originally
proposed by Cherepanova (which is generally not con-
sistent with equilibrium interfacial fluctuations) in that
(i) bulk Langevin forces need also to be included in the
interface conservation conditions and (ii) an extra sto-
chastic interface force associated with the relaxational ki-
netics of the interface needs to be included in the Gibbs-
Thomson condition. In connection to experiment, there
are a number of alleys of investigation which seem worth
exploring in the future. For example, it would be useful
to perform using the present formalism a detailed calcu-
lation of noise amplification during rapid dendritic
solidification where a pronounced sidebranching activity
is still observed [12] and one could expect the consider-
ably finer dendrite tips to be more susceptible to thermal
noise. This might help decide if the present inadequacy
of this noise to account for the observed sidebranch am-
plitude is peculiar to slow solidification rates or a general
feature of dendritic growth, in which case the effect of
other extrinsic noise sources such as the heterogeneous
nucleation of microbubbles of dissolved gases at the

ka Tr (p) 6(r —r') 6(t —t')
ri r, t ri r', t' =2

[i+~V.g(r, t) ~']'"
to the right-hand side of Eq. (3) which, using the
definition of ~ „,can be rewritten in the form

2dok
I

+" dn i Re[i/g(n)]
p

" " rr It(&) Re[ I(/I+in)' ']

represents the additional contribution of the interface
force rt(r, t) to the fluctuations. The two functions can be
shown to satisfy the conditions F (drrk;op)+F (drk;po)
=1 for all k and p which verifies the consistency of the
formalism.

The most relevant question which arises from the
present results is under what growth condition the inter-
face force should afTect the formation of solidification

n z 6&(r, t) = TM —Tr (p) —I x + ri(r, t ) . (14)
p Bt

The factor of [1+~V&((r, t)
~

] 't in the denominator of
Eq. (13) is necessary to ensure that the net force on a
small area dS of the interface is independent of its orien-
tation with respect to the (x,y) plane. Note that our
present parametrization requires g(r, t) to be single
valued [the generalization to the more general case where
g(r, t) is multivalued is straightforward]. In an analo-
gous way that bulk forces originate microscopically from
fluctuations in the kinetic energy of molecules inside a
small volume, the interface force ri(r, t) can be interpret-
ed as originating from fluctuations associated with the ex-
change of molecules between the two phases across a
small area of the interface. In particular, this exchange
results from the balance of two activated processes (cor-
responding to adding and withdrawing a molecule to and
from the solid) whose average rates are strongly tempera-
ture dependent and equal when Tr(p) =TM The inter-.
face force describes fluctuations in the difference of these
rates.

The consistency of the Langevin formalism now defined

by Eqs. (1), (2), and (4) together with Eqs. (13) and
(14) is then straightforwardly verified by calculating the
static fluctuation spectrum with ti(r, t) added to the left-
hand side of Eq. (8). The analog of Eq. (9) becomes
(gk& —k)nojge ((k( —k)eqUjj[Fg (dok;p ) + Fr (dok;p )], where
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solid-liquid interface, for which there is experimental evi-
dence [13], may have to be considered. In the context of
directional solidification, it would also be useful to per-
form an analysis of the effect of thermal noise close to the
onset of morphological instability. There, the noise level
can be directly inferred experimentally by measuring the
time necessary for fluctuations to become macroscopically
amplified [14]. An analysis of this type for the one-sided
model of directional solidification [7] indicates that such
noise measurements should be possible for extremely di-
lute alloys or liquid crystal systems [15] where a direct
comparison of theory and experiment could be made.
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