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Spin-Orbit Berry Phase in Conducting Rings
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The spin Berry phase can be observed in conductance experiments on rings of noncentrosymmetric
materials. It results in destructive interference and in the shift of the Aharonov-Bohm oscillations.
The spin-orbit interaction in vacuumlike Aharonov-Bohm experiments leads to the opposite sign of
the magnetoresistance in comparison with the weak localization regime in disordered conductors. A
time-dependent uniaxial strain results in current in a ring.

PACS numbers: 71.70.Ej, 02.40.—k

The concept of Berry's phase [1] is applied in difFer-
ent areas of modern physics [2]. This topological phase
arises as a result of the adiabatic variation of the exter-
nal parameters. Its most simple example is the phase
obtained by the spin wave function in the presence of a
magnetic field. When the value of the field is constant
and its direction follows adiabatically a closed trajectory
the spin wave function acquires an additional phase fac-
tor besides the standard phase in the static magnetic
field. The Berry phase is proportional to the solid angle
subtended in a space by the magnetic field. Berry [1]
also demonstrated that the Aharonov-Bohm (AB) effect
[3] can be considered as an example of the adiabatic topo-
logical phase. Since this effect manifests itself in several
remarkable quantum phenomena [4, 5] it is interesting to
find out whether the spin topological phase also results
in coherent effects.

Persistent currents in mesoscopic rings induced by the
Berry phase were studied by Loss and co-workers [6].
Stern [7] demonstrated that the spin phase efFect on
the conductivity of the rings is similar to the inHuence
of the Aharonov-Bohm Hux effect and discussed motive
forces connected with this phase. However, the manner in
which the magnetic field is varied in [6, 7] leads to rather
difFicult experiments. Meir, Gefen, and Entin-Wohlman
[8] have considered the spin-orbit scattering effect in
mesoscopic systems. They found that spin-orbit inter-
action modifies the magnetic flux C dependence of the
spectrum into a C + 6 dependence for two relevant spin
directions (6 depends on spin-orbit scattering). There-
fore, they could find the dependence of any property on
spin-orbit scattering.

In this paper we demonstrate that the spin-orbit inter-
action in low dimensional or lowered symmetry conduc-
tors leads to topological spin phase effects in conducting
rings. Even in the absence of an external magnetic field
the electron spin in low dimensional structures is influ-
enced by the momentum-dependent effective magnetic
field because the electron Hamiltonian 'H includes a term
linear in momentum p,
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where A is the vector potential and w, is the Larmor fre-
quency, x ]] (100),y ~

(010). Adopting a cylindrical coor-
dinate system and the tangential component of the vector
potential A~ = C /2vrr we have the following Hamiltonian
for the electrons in a closed ring:
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which describes the spin-orbit splitting of the electron
states at p g 0. Here m is the effective mass; a, are
the Pauli matrices. If the electron momentum p sub-
tends a closed trajectory in the momentum space dur-
ing the electron motion, the effective magnetic field in
Eq. (1) leads to the Berry phase effect. We demonstrate
that the conductance of a quasi-one-dimensional ring is
an oscillating function of the topological Hux induced by
the momentum-dependent magnetic field. We show that
time-dependent uniaxial strain results in a motive force
in the ring, similar to one discussed in [7].

We consider a quasi-one-dimensional ring of radius r,
which could be defined in the two-dimensional electron
gas (2DEG) of a semiconductor heterostucture. All the
symmetry aspects concerning the effective field will be
discussed below. First we take the normal to the het-
erostructure interface z

~

(001). For a rectangular quan-
tum well in a AsBs crystal the Hamiltonian in the exter-
nal magnetic field B

]~
z is

(p —-', A) + (p —-', A)„
2m
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Here cu = tz/2mr, cue = hP/2r, C is the magnetic field
flux, Co —— ","' is the flux quantum. The eigenvalues of
the Hamiltonian (3) are

~~ = h~(E + 4) +5 ~c2(E2 —4)+ (~, +url)2,

where E = n —
2 + @, and n is an integer number. At

E )) 1 the wave functions are given by
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FIG. 1. Ring connected to current leads.
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acquires also the topological Berry phase for the spin 2,

4~ = +70 1 — = +'7t 1 —cos t9

gLdc + Ld
(9)

which is exactly half of the solid angle subtended by ef-
fective magnetic field. The angle between the z direction
and the cone, 8, satisfies cot8 = ~.

Now consider a ring coupled to the current leads

where tan0 = — '
&. First we consider for simplic-

ity the case when C = 0 whereas Zeemann splitting is
present. Then Eqs. (4)—(6) show that the two waves
propagating in opposite directions in a ring obtain dif-
ferent phases due to the effective field. The situation is
similar to the usual AB eKect. It is clearer from the qua-
siclassical description of the electron in a ring with the
Hamiltonian (3). In this case the electron in the zeroth
order is a rotator with the frequency 0 = "„(p is the
momentum along the ring). If the electron wavelength
A is much less than the size of the circle (A « zrr) the
electron motion is quasiclassical and the wave function
is @(&p, t) = 4„(p, t)y(p, t), where @„(y,t) is the quasi-
classical rotator wave function and y is a spinor. Insert-
ing @(y, t) into the time-dependent Schrodinger equation
with the Harniltonian (3) and taking into account the first
order to h we have

Bg
25 = CT Cdpg.
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Here u, = (+hpzrzrAcosAt, —hpmrAsinAt, a, ) is the
effective Zeemann frequency for the anticounterclock-
wise rotator; for the counterclockwise motion 0 is to be
changed by —A. Equation (7) is the equation of motion
for a spin 2 in a magnetic field which follows a cone-
shaped path, and its exact solution can easily be writ-
ten. In the adiabatic situation ao, w, )) 0 we see that
during the period T = 2zr/A the wave function, besides
the dynamical phase

(P2 'l (exp ipr 0 ) (Pi
qP2) q 0 exp ip2 p qP&

(10)

where pi g p2 are the phases to be calculated for the
given energy of the transmitting particle and for the cer-
tain electron spectrum in the ring. The phase pq is the
phase acquired by an electron traversing the branch in
the counterclockwise direction; the phase (—1)y2 is ac-
quired in the course of' the anticounterclockwise motion.
In the absence of a magnetic field and the spin-orbit split-
ting of the electron states p~ ———p2 ——vrkor. In the pres-
ence of a magnetic field, or due to the spin-orbit splitting,
the phases are different in the absolute value.

Using Eq. (10) and following [9] we obtain the electron
wave function of unit amplitude o.i = 1 [the spin-up or
spin-down solution of the Hamiltonian (3) with p„= 0]
is transmitted to another lead with amplitude

(Fig. 1). We assume that the electrons propagating in the
leads are described by the Hamiltonian (2) with p&

——0;
they traverse the ring in the counter- or anticounterclock-
wise direction and the resulting transmission probability
is influenced by an interference. We study the ballistic
motion of electrons in the absence of scattering and thus
neglect also the spin-flip processes. In this case spin-up
and spin-down electrons traverse the ring independently.
We assume that the electron spin is not changed while
the electron passes a junction. In this situation the trans-
mission amplitude of the ring is derived using the same
procedure as was used by Buttiker, Irnry, and Azbel [9].

For simplicity, we study the perfect symmetric ring
with equivalent branches. A wave of unit amplitude with
"spin up" or "spin down" coming from the current lead
is transmitted into the two branches with equal ampli-
tude

zlzz

and refiected back with amplitude gl —2zl. For

g = 0, one junction completely reflects electrons back
to the lead (limit of the weak coupling). For zl =
the junction is completely transparent for electrons (the
strong coupling limit).

In the absence of the electron scattering the ampli-
tudes in the upper branch, for example, are transferred
according to
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and using adiabatical and quasiclassical conditions we
have for the spin-up electrons
ps —7l 7ls

= (—1)'~kp+r + — 1—
2

(hPkp+)2 + ~2)
4

Cp

(13)
Here kp are the wave vectors of the incident electrons
with spin up and spin down, which are different for the
given energy; s = 1, 2. For the spin-down electrons, kp+ is
to be replaced by kp, and the sign of 2 is to be changed
to the opposite.

where b =
2 (v'1 —2g + 1). Equation (ll) coincides with

Eq. (4.24) in [9] apart from the nonessential phase fac-
tor due to the different choice of the transfer matrix in
Eq. (10). The physical situation can be explained as
follows. The waves which have traversed the ring in
the counter- and anticounterclockwise direction acquire
the phases yq and —y2. They interfere at the second
junction and the transmitted amplitude in the lead is
q(expi&pq + exp —iraq). This interference is analogous to
the vacuum AB effect and it vanishes in the limit g ~ 0.
The multiple passages of the waves in a ring give rise
to resonant states with width proportional to g and re-
sult in the conventional resonant tunneling. If the energy
of the tunneling electron is equal to the eigenvalue of the
closed ring the transmission reaches its maximum. There
are also oscillations due to the multiple passages within
one of the branches of the ring. In the strong coupling
case (g z) these oscillations, as well as vacuumlike AB
effect, are of order of unity.

In general, the energy of the tunneling electron E does
not coincide with the eigenvalues of energy in a closed
ring. Therefore the solution of the equation E = e~
determines noninteger numbers n [Eq. (4)]. It has four
solutions which determine the phase K = urn in a semi-
circle for the counter- and anticounterclockwise motion
of electrons with spin up and spin down. We see from
Eqs. (5) and (6) that the two components of spinors ac-
quire different phases. This can be taken into account
and it is nonessential for the final results. If the Zeemann
and the spin-orbit splittings are absent, we obtain two
phases pq = vr(kpr+ 24/4p) and &pq = vr(kpr 2C—'/C'p), —
where kp is the wave vector of the incident wave. The in-
terference of the waves with such phases results in the
Aharonov-Bohm oscillations of the transmission proba-
bility.

Writing the equation E = e~ in the form

(15)
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The phase obtained by the electron wave function in
the course of traversing the hole ring, 2pq or 2p2, con-
tains the Berry phase C ~, described by Eq. (9), besides
the standard phase C + = 2vrkp r. The phase due to the
Aharonov-Bohm efFect is the only magnetic field orbital
effect in our system because the current leads are one
dimensional.

As we mentioned above, the most pronounced effect
caused by the interference exists in the strong coupling
limit. Then the transmission probability of the ring for
different spins T~ reads

4 sin
(14)

tan
& + 4sin

where the topological phase C,+ = C» —2~@ includes

the spin Berry phase C» and the Aharonov-Bohm phase

2' @ . If the spin-orbit splitting is absent and the Berry
phase is C'~ = 0, we have [9]

C+ f' 2m. C 4+ l
Ty = 4sin '

~
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We see that the transparency is decreased by the mag-
netic field at small magnetic Hux. This sign of the effect
corresponds to positive magnetoresistance.

If the spin-orbit interaction is essential then 4»
vr —64(B), and at small fields 6'4'(B) (( 1 we get
T~ oc B2. Thus, the transparency of a ring is increased
by the magnetic field (negative magnetoresistance).

We see that the signs of the effect are opposite to the
signs of magnetoresistance in the weak localization effect.
The reason for this difference is the following. If the spin-
orbit splitting is absent, the interference of the waves
in a ring has a constructive character, and at B = 0
the transmission probability is unity. The magnetic field
suppresses the interference and the magnetoresistance is
positive. In the weak localization regime this suppression
means that the probability to find a particle in the initial
point is lowered, i.e. , the diffusion coeKcient increases,
and the efFect is opposite (negative magnetoresistance).

In the presence of the spin-orbit interaction the in-
terference is destructive; at B = 0, 4» = ~ and the
transparency of the ring is equal to zero. In this case the
magnetic field increases the conductivity and the mag-
netoresistance of the ring is negative. In weak localiza-
tion the suppression of the destructive interference by the
magnetic field leads to positive magnetoresistance [10].

It can be seen that while the spin Berry phase takes
values within the interval [0, ~], the phase C i is not lim-
ited. If Ci ——vr(2m+ l), m is an integer number, and
the conductance of the ring is zero. The correspondent
magnetic fields depend on the strength of the spin-orbit
interaction, governed by the Fermi energy E~. When
Cq ——2vrm, the conductance of a ring reaches its max-
imum. The spin Berry phase leads to the shifts of the
minima and maxima of the conductance. These shifts
can be tuned by tuning the spin-orbit splitting.

We would like to mention that magnetic fields in ex-
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where p~ 4 z, e is the deformation perpendicular to the
plane. The coefFicient bj is determined by the Rashba
term [12] as well as by the size quantization in non-
centrosymmetric crystals; the term proportional to 62 is
caused by the uniaxial strain. The cubic-in-momentum
efFective magnetic field is absent. The effective field can
be varied by the external strain, and could even be made
equal to zero. If a ring is confined in the 2DEG plane,
the total magnetic field follows a cone-shaped path in
the course of the electron motion, and all the effects we
discussed for the geometry with z

~~ (001) are present.
As was shown by Stern [7], the time-dependent spin

phase induces a motive force and creates a current in a
ring according to Ohm's law. In the geometry of experi-
ment which we propose the motive force can be induced
by the time-dependent external strain. The usual acous-
toelectric effect does not contribute to the current and
the entire effect is caused by the time-dependent fIux.

It should be noted that the coefficient bi in Eq. (16)
can also be tuned by a variation of the external electric
field applied perpendicular to the plane of the ring. The
reason is the variation of the quantum well profile.

The estimations show that the most promising mate-

trema are different for the spin-up and spin-down tunnel-
ing electrons. The conductance is determined by both the
spin-up and spin-down contributions and consequently
the most pronounced effect takes place when electrons
are polarized and only one kind of them gives rise to the
conductance.

Another type of oscillation of the conductance, which
is clearly seen from Eq. (14), is determined by the phase
C, . We attribute this effect to the location of tunneling
electrons in one of the branches of a ring. The phase
obtained by the electron wave function during a cycle
of motion in a branch between two contacts is equal to
4, . If cos C i g 1 and C, = vr(2m + 1) the conductance
reaches maximum; if C, = 2vrm the conductance is zero.

Consider the experimental situation. The term linear
in the electron momentum in the electron Hamiltonian is
allowed by symmetry [11] in asymmetric quantum wells,
in rectangular quantum wells in noncentrosymmetric ma-
terials, and in tellurium type and wurzite type bulk crys-
tals. It can also be induced by uniaxial strain in A3B5
crystals, where an effective magnetic field cubic in the
electron momentum is present in the bulk material. The
latter efFective field can also contribute to the spin Berry
phase.

We have found a rather promising geometry for experi-
ment. If the normal to the 2DEG plane in a A3B~ crystal
structure is directed along z'

~~
(111) the Hamiltonian is

rial for the observation of the spin Berry phase is InAs
due to the large value of the electron g factor (g = 15),
and a sizable value of the spin-orbit splitting of the elec-
tron states.

In summary, we have shown that the spin Berry phase
can be observed in the conductance experiments on rings
in noncentrosymmetric materials. The spin Berry phase
results in destructive interference. We found that the
Berry effect produces a phase shift of the Aharonov-
Bohm oscillations. Spin-orbit effects in weak localiza-
tion can also be interpreted as a result of the spin Berry
phase, but the sign of magnetoresistance in rings in the
ballistic case is opposite to the sign of magnetoresistance
structures in the weak localization regime.
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