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Destabilization of the Internal Kink by Energetic Circulating Ions
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A stability analysis is carried out for the m =1, n =1 internal kink mode, in the presence of energetic
circulating particles. It is found that, including the eAect of finite radial particle-orbit excursion, the
m =1 internal kink mode is strongly destabilized by the resonance interaction with the energetic passing
particles. Such an instability could explain the experimental observations of the "fishbone" oscillations
during tangential neutral beam injection [W. W. Heidbrink et al. , Phys. Rev. Lett. 57, 835 (1986)l.

pACS numbers: 52.35.py

The study of the fishbone instability is of particular im-

portance to magnetic confinement fusion. Recent toka-
mak experiments [1-4] have shown that a mode with
dominant poloidal and toroidal wave numbers rn =1 and
n=1 is strongly destabilized by the injection of fast neu-
trals. Such an instability (denoted as "fishbone oscilla-
tion") is correlated to particle bursts corresponding to the
loss of energetic beam ions. The current view [5-7] is
that a fishbone oscillation is an internal kink destabilized
by the resonant interaction with the energetic ions
trapped inside the q =1 surface (q =rBt/RBtt is the safety
factor). Such an interpretation fails to explain the obser-
vation of fishbone oscillations during tangential injection
[2], where neutral beams are injected parallel to the mag-
netic axis and trapped particles are virtually absent. In
this Letter, we investigate the stability of the internal
kink in the presence of an energetic circulating ion popu-
lation. We show that by retaining the effect of finite orbit
excursion and the bulk ion diamagnetic drift frequency,
the circulating beam particles can indeed destabilize the
m= 1 internal kink mode. The growth rate of the insta-
bility is comparable to the one of the trapped-particle-
induced fishbone mode and in general agreement with the
experimental data.

The stability analysis essentially follows the approach
adopted in previous articles [7]. We consider a plasma
consisting of bulk ions and electrons and energetic ion
beams injected parallel to the magnetic field. All species
are treated kinetically and, for simplicity, we assume that
the beam particles are purely circulating (t & «~~v), the
bulk ions and electrons are isotropic, and the ions are
electrostatically confined. According to these assump-
tions, we choose the following form of the equilibrium
distribution functions: f p =F;(e), f,o=F, (e, Pt), and

ft, o=Ft, (s,Pt„p), where e=mv /2+Zero, Pt, =mRv&
+Ze+/ c, and p =mv~/28 (with pB &&a for the beam
particles). Furthermore, the structure of the instability is
mainly that of an ideal magnetohydrodynamic (MHD)
mode (E~~=0). In order to carry out the analysis, we in-
troduce the inverse aspect ratio e =r, /R «1 (r, is the ra-

Retaining the bulk ion finite Larmor radius effects, the
eigenvalue equation describing the linear evolution of the
radial displacement for the m=1 internal kink mode in

toroidal geometry can be written in the following form:

r [—4trp;co(co+co; )+F ] =[g(r)+h(r)]&„,1 d dg,
r dr dr

(I)
where F= —88(1 —q)/r, to,

* =—cT;/Z. ;eBrjrz, r, is the bulk
ion-diamagnetic-drift frequency, g(r) —e F represents
the Iluid potential energy given in Ref. [8], and h(r) rep-
resents the kinetic potential energy
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The quantity b is the unit vector in the direction of the
magnetic field and x'=b Vb is the magnetic field line
curvature. The structure of the ideal internal m =1 mode

dius of the q =1 surface) and the Ohmic tokamak expan-
sion P- e, q —I, Pit-1. We consider a small population
of energetic particles (nt, «n; and Tt, )) T;). For such en-

ergetic particles, we retain the effect of finite radial orbit
excursion by writing the particle trajectory as r(t) =r
—hbcose(t), with r the constant of motion and

=q(r)v~~/Q, b (r2„t, is the beam cyclotron frequency). To
capture the essential physics and to model the experiment
of Ref. [2], we order Pt, /Pt —e, T;/Tt, —(At, /r, ) —e

We introduce the E &&8 displacement g~ =—ic && (E~ x Bp)/
mB, and we consider a perturbation dominated by a

large m=1, n=1 component and a small m=2 side-

band,

g =g„i exp[ —ie —ittt —itot]

+ e&,2exp[ 2i e iy —i tot ]—+—O(e') .
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is characterized by the presence of a transition layer of
thickness 6—b r, ("inner" region), centered around the
q=1 surface, where the inertial effects are important.
Away from this layer ("outer" region), the plasma inertia
can be neglected. A dispersion relation can be derived by
matching the solution in the transition layer to the outer
solution. We first solve the eigenvalue equation in the
outer region, and, using standard techniques, we derive
the asymptotic behavior of the eigenfunction in proximity
to the q=1 surface,

BWF + 68'g
(,(r=r, ) =go H(r, —r)+ (s)

where

v~) gp(1/2tt) f cosg'H(r, —r+hb cosg')dg'
Sb= e

Rp i [to+ to—b —k iii (r ) v ii]

fr2
6WF = —tr„rg(r)dr/(Bes) 2,

Ps

SW = ~ rh(r)dr/(a~)„,
x=(r —r, )/r„and H(x) is the Heaviside unit step func-
tion. The quantity 6'WF is related to the negative of the
ideal MHD energy functional 68 MHD. The effect of the
resonant interaction between the wave and the beam par-
ticles is included in the total kinetic potential energy 68 ~
through the orbit integral ~~ [Eq. (4)]. The resonance
condition for circulating particles is simply to —

k~~ (r)vt~
=0, where k~~~ (r) =[m'/q(r) —1]/Rp (m' 0, 1,2). For
the m= 1 internal kink mode, v~~/Rp&&co„—co,

* for each
particle species, and strong resonance occurs only in the
neighborhood of the q=1 surface [k~~~(r=r, )=0]. It is
easy to show that the resonant condition is only satisfied
by the beam particles localized within the region r, —hg
& r & r, +hb. Notice that the main resonant contribu-

tion is provided by the interaction with the poloidal elec-
tric field inside the q =1 surface and not by the large ra-
dial electric field in the inertial layer. The resonant in-
teraction within the layer is virtually absent because the
radial component of the particle magnetic drift velocity
changes sign over a complete period of the particle orbits.
It follows that there is no net interaction with the radial
electric field. Furthermore, the orbit excursion h~ for an
energetic beam particle is much larger than the inner lay-
er width; therefore very little time is allowed for such an
interaction. In contrast, the particles transiting in the re-
gion r, —hb & r & r, +hb experience the efTect of the
electric field when they penetrate inside the q =1 region

((,=0 for q ) 1). Their poloidal drift velocity inside the
q=1 surface is in phase with the poloidal electric field
and the resonance condition is satisfied for r =r, +co/
(k~~~)„' v~~. For a quantitative estimate of the resonant in-

teraction, we write the beam particle orbits in the follow-

ing form:

8(t') =g(t') + a sing(t') + O(@sing),

y(t') y(t) = —(t' —t )+O(using),
Rp

r (t ') =r hb cos8(t—') +0(e' '),
(7)

where

g(t') g(t) =—[ —i ii/q(r)Ro+ rob] (t'

a =(s+1)hb/r, and r =r+hbcos9. The quantity tpE rep-
resents the Eo&& Bp drift frequency [cob ——cEpx Bo VB/B ]
and s = rq'/q is the—magnetic shear. The lowest order
resonant component of the orbit integral can be written in

the following form:

(9)

Equation (15) can be used to evaluate the kinetic potential energy BW&. For a purely circulating beam particle popula-
tion, the equilibrium can be approximated by a slowing down distribution function,

JZmb't2 H(st s) S(pao/s)—
Fb = pb r

7Mt sp + s 2
I 0' +0H+ vii' (10)

where pb(r) is the beam particle energy density [pb =fdvsFb] The paramete. r a. can be adjusted according to the kind
of injection; o =0 for a balanced beam and o =1 for a beam injected in the + Bp directions. The paramenter ep is the
low-energy transition to the bulk plasma and cI is the injection energy. Typically, cl » ep.

Combining Eqs. (2), (3), and (9) with the assumption that to —tp; « (BFb/9Pt, )/(6Fb/Bs), a short calculation shows
that the function /t (r) of Eq. (2) has the form

8 1
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h(r) —
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tr R,' BP, ~hb)
— tp+tpE —k((l(r,. +zhb)v((

where z = [r(r, 8) —r, ]/hb. The kinetic potential energy 8W~ can be easily derived by inverting the order of integration

fdr f

deaf

dv =fdv fdOf dr and using dr =hbdz. For co; « (cp„+ tpb ) and neglecting the real part of
6W~ [Re(BW~) && 6WF], the result is

. 2 rs hI"" /jbe68'g = —i—
3 Rp rpb s r,

[1+O(~'")], (12)
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where pbtt=8trpb/Btt is the beam poloidal beta and Ab"'

=qc(2mbsi) ' /ZbeB is the particle-orbit excursion at
the injection energy. The quantity rpb

= —[dpb/pbdr]
is the beam pressure gradient scale length.

In the inner layer of thickness 6—e r„ the eigenvalue
equation [Eq. (I)] can be simplified, yielding

d 3
~ r'[ —4ttp;cu(to+to; )+F ] =0.dg,

dI' dl'
(i3)

The solution of Eq. (13) leads to the well-known expres-
sion for the eigenfunction,

r

g, (r =r, ) =gp ———tan
[—tp(ot+ tp;*)] 't'

(i4)

where cp = tuR/st ~ and tp,
* = to;*R/sv~. The dispersion

relation can be derived by matching the inner and outer
solution for r r„yielding

[ —tp(to+ ot,*)l
'"

= (SWF+6W~)/sgn [Re[ —tp(tu+ t5,*)]'t ] . (15)

The roots of this equation exist only for 68'F positive. In
the limit of or; 0 and for 0 &6WF & tp,*/2, the disper-
sion relation gives two finite frequency roots,

tp„= —
2 [tp; +' [(cu; ) —48WF] 't j .

The two frequencies characterize the well-known low and
high frequency branch of the internal kink mode [9] that
are stable in the absence of resonant particles. The imag-
inary part of the dispersion relation [Eq. (15)], shows
that the fishbone branch, with the "—"sign, is driven un-
stable by the resonant interaction with the beam parti-
cles. The growth rate of this instability can be approxi-
mated by the following expression,

mak such as PBX), r, /Rp= 1/9, Pb =O. IP;, s =0.4,
st =44 keV, t5,I,""/r, =0.4, rp, /rpb = 1.5, m; =2mp, Bt,
=0.84 T, and BWF =0.005, Eq. (18) yields y = 10
sec ', which corresponds to a growth time of approxi-
mately 100 psec. This result is in good agreement with
the experimental observations of Ref. [2]. The expression
of the growth rate for the circulating-particle-driven
fishbone mode [Eq. (18)] has been compared with the one
of the trapped-particle-driven fishbone mode given in Ref.
[7]. For hydrogen isotope beam particles, the result is

yell'c 4 r . Qb J si Pb"

)
"'p 3tt r„b sRp T p"'p (i9)

where pb"' is the trapped particle beta, averaged inside
the q

= I surface. For PBX parameters and for pb'"'
=Pb"P, it is readily found that y""'= y"'P, in agreement
with the experimental observations [2].

We have shown that the m =1 internal kink mode can
be strongly destabilized by energetic circulating ions and
that the growth rate of the instability is about equal to
the one of the trapped-particle-induced fishbone mode.
In a burning plasma, the circulating alpha particles with
large radial orbit excursion could also destabilize the
internal kink causing a substantial loss of energetic parti-
cles. The resonant interaction of circulating alphas with
the internal kink needs further investigation to determine
how detrimental its effect can be on alpha particle con-
finement.
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where p; and pb are the toroidal bulk ion and beam betas,
and r&, is the bulk ion-pressure gradient scale length.
Since BWF—P;, rp; —rpb, and 0„—Q,b, Eq. (18) shows
that the scaling of the growth rate is y —pbt'lib/Rp. For
the following equilibrium parameters (typical of a toka-

Observe that the instability starts growing when the plas-
ma has approached the condition for ideal marginal sta-
bility of the internal kink mode (6WF =0). In proximity
to the ideal marginal stability, a convenient expression for
the growth rate can be written in the following form,
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