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Shock-Wave Propagation in a Sonoluminescing Gas Bubble
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The motion of the bubble radius and of the air trapped inside the bubble during sonoluminescence are
determined self-consistently by coupling the solution of the Rayleigh-Plesset equation governing the bub-
ble radius to the solution of Euler's equations for the motion of air in the bubble. Results are presented
for three slightly different conditions of excitation, in two of which shocks are formed during the collapse
of the bubble, and in which such high temperatures are attained that the air is ionized. Estimates are
made of the duration and intensity of the light then radiated by the plasma.

PACS nUmbers: 47.55.8x, 43.25.+y, 47.40.—x, 78.60.Mq

It has long been known that, when acoustic energy is

focused on a bubble of air trapped in water, light may be
emitted. Sound having a Mach number of order 10 is

thus able to create photons with energies of several eV.
This remarkable phenomenon is known as sonolumines-
cence. The sound waves generated by transducers are
transmitted almost radially to focus on a bubble, the ra-
dius of which varies between a few tens of microns to a
few tenths of a micron. They compress the air within it
to high pressures, temperatures, and densities, during
which time the light is emitted. Radiation, with a peak
power of over 30 mW, occurs only during an interval of
less than 50 ps within each cycle of the sound field, which
has a period of a few tens of microseconds [1]. The sim-

plest theories [2-4] suppose spherical symmetry and
model the water as an (almost) incompressible fluid. The
surface of the water acts like a piston that compresses
and decompresses the air periodically.

The radius R (t) of the bubble obeys [2-4] the
Raylei gh -P/esset equation:

RR+ —R = [p(R, t) P, (t) —Po]—
pw

+ [p(R, t) —P.(t)] —4v —.
R d R

pc dt R

Here overdots denote diA'erentiation with respect to time,

p is the water density, p is the air pressure, Po+P, is

the pressure in the water at great distances, Po is the am-
bient pressure, P, (t) = —P,' i sntcois the pressure of the
acoustic field with a frequency of m„v is the kinematic
viscosity of the water, and c is the speed of sound in wa-

ter. The ambient radius of the bubble, Ro, is defined to
be its size at NTP (Po =1 atm and To =300 K).

Because of the enormous compressions in the bubble,
Ref. [4] modeled the trapped air by a hard-core van der
Waals equation of state, for which pressure p, specific
volume V, temperature T, internal energy e, and entropy
5 are related by

.RT v —Ip, e =c(T= p,
V —b' '

y
—

1 ()5 =c,, in[p(V —b) "]+const,

where .8 is the gas constant, c,, =%/(y —1) is the specific

heat at constant volume, y=1.4 is the ratio of specific
heats, and b =1/p~ is the van der Waals excluded vol-

ume. They assumed, as we shall, that b =0,036
liter/mole, so that p =794 kgm is the maximum pos-
sible density. The resulting R(t) agrees with experiment
much better than does the R(t) for a perfect gas, b=0
[4].

To supply the p(R, t) to close Eq. (1), Lofstedt, Bar-
ber, and Putterman [4] assume that the air moves adia-
batically (5=const). Although the resulting R(t) agrees
well with experiment, the maximum temperature within
the bubble (= 10 K) is much lower than the experimen-
tally observed 10 K or greater [5]. They conjectured
that this is due to the assumption of adiabaticity. They
recommended that detailed calculations of the internal
state of the bubble should be undertaken, including the
generation of shock waves. In fact there have been two
recent studies of such nonadiabatic models [6,7]. Moss et
al. [6] have studied the compression of the air by a con-
stant pressure applied to its boundary. They did not solve
an equation of motion for R(t) such as Eq. (1). Green-
span and Nadim [7] used Guderley's famous similarity
solution [8] for radially moving sound waves to study the
behavior of the shock launched by the bubble as it ap-
proaches and leaves the center of symmetry, O.

In what follows, we shall present solutions of the com-
plete problem, i.e., that of the motion of the bubble sur-
face, and the motion of a van der Waals gas within the
bubble, including the generation and propagation of
shocks. We therefore solve Eqs. (1) and (2) in conjunc-
tion with the gas How equations in spherical symmetry,

Bp 1 r)+ (pvr ) =0 (3a)
clt t t)r

t) 1 ci q 2 Bp(pv)+ (p r't)+ =0
6t 6r 9r
BF 1 6+ [(E+p)vr'] =0, (3c)
Bt r2 6r

where r is distance from 0, p is the gas density, F
= —,

'
pv +pe is the total energy density, and v(r, t), the

radial component of gas velocity, obeys v(R, t) =R. We
solved Eqs. (3a)-(3c) numerically using a Lax-Friedrich
scheme and a moving grid of 800 points, with a temporal
resolution of approximately 4&10 ps at times when the
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radius of the bubble was near its minimum. The last grid
point coincides with the boundary of the bubble. Our nu-
merical scheme successfully recovered the similarity solu-
tion of Guderley [8] for an ideal gas.

We supposed that the bubble is transparent to radia-
tion [9], and we estimated its optical luminosity I (t) as-
suming that this is due to bremsstrahlung emitted from
the air after it has been ionized by shock compression.
For simplicity, we supposed that air consists of atoms of
atomic weight 14.5 that are only singly ionized. We as-
sumed that the ionization potential was (as for nitrogen)

g =14.5 eV. To derive the degree q of ionization, we sup-
posed that local thermodynamic equilibrium prevails,
so that Saha's formula [10] applies: q /(1 —q) =2.4
& 10 ' T e ~ "

/iV, where it is Boltzmann's constant
and A = 4. 16 & 10 p m is the number density of at-
oms. We did not include modifications to the equations
of state (2) arising from the ionization. We computed
the radiative power emitted per unit volume from [11]:
Pa, =1.57&&10 q iV T't Wm . (When Z electrons
are ionized, this expression should be multiplied by Z .)
The radiation generated in the bubble is absorbed by the
surrounding water, except for that passing through a
"window" of wavelengths greater than 200 nm. We in-
tegrated PB„ throughout the volume of the bubble, retain-
ing only the fraction that passes through the window, and
so obtained L(t).

We present results for three cases (all for b =1.26
x10 m kg ' and v=7&& IO m s '): (1) P,'
= 1.275 atm, Rp =4.5 pm, tu /2tr =26.5 kHz; (2) P,'
=1.5 atm, Ra=20 pm, tu, /2tr =25 kHz; (3) P,' =1.075
atm, Ro =10.5 pm, tu, /2tr =26.5 kHz.

Consider first case (I ). Figure I, which resembles
closely those given in Ref. [4], shows R(t) obtained by
solving Eq. (I) under the assumption that the air moves
adiabatically. The maximum bubble radius is R
=37.09 pm and is attained when t =16.65 ps. At that
time, p=0.0023 kgm and p =14.36 Pa. At the other
extreme, the minimum bubble radius is R;„=0.59 pm
and is attained when t =t, = 20.490 ps. Then p=574
kg m, p =3.02 x 10 Pa, and T =5695 K. This integra-
tion provides a very useful comparison with results from
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the integration of the full system (1)-(3), i.e. , from the
nonadiabatic calculation,

The nonadiabatic solutions scarcely differ from the adi-
abatic solution during the interval between t =0 and
t =16.65 ps, so we used the adiabatic solution up to the
moment of maximum radius and started integrating Eqs.
(1)-(3) from t =16.65 ps with p =0.0023 kgm, p
=14.36 Pa, i =0, and R =Rm„. „=37.09 pm. From
=16.65 ps to the time when the bubble radius reaches
R;„, the solution R(t) of the nonadiabatic system is

close to that of the adiabatic system, but differences grad-
ually magnify as t =t, is approached, especially in the air
velocity t. .

Figure 2 shows the time evolution for case (I ) through
a time interval t, (t (t~. of duration 0.417 ns spanning
the instant t =t, = 20.490474 ps at which R = R
There are four columns. Each column contains four
panels, showing p(r), t (r), p(r), and T(t') for 0 ( r(R(t). The first column from the left shows the solu-
tion for t = t, =20 490 257 p s, ty = t, +0.156 ns, and
t, =I', +0.19864 ns, during which the first shock-wave
forms, at r —0.3 pm at I —ty. The shock wave becomes
stronger as it focuses at 0, and this is shown by the solu-
tions for t =t, . At t =t„ the shock speed is 2.5x10
ms ', the upstream values of density, velocity, and pres-
sure are 101 kg m, —18 m s ', and 5.5 & 10 Pa, re-
spectively, and their downstream values are 407 kg m
—1.9&&10 ms ', and 6. 1 x10' Pa, respectively. Near
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FIG. 1. Case (I): bubble radius vs time according to the
adiabatic solution.

r (p.m)
FIG. 2. Time evolution of case (I) from the nonadiabatic

calculation. p is in kgm ', t. in kms ', p in Pa, and T in K.
Shown are solutions for (a) t =t, =20.490257 ps; (b)
Ib =t, +0.156 ns; (c) t, =t, +0.19864 ns; (d) td =t, +0.19898
ns; (e) t, =t, +0.21641 ns; (f) tf =t, +0.22235 ns; (g)
tg =t, +0.261 72 ns; (h) th =t, +0.377 ns; (i) t; =t, +0.396 ns;
and (j) t, =t, +0.417 ns.
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the time at which the shock wave reaches r =0, the solu-
tion resembles Guderley's imploding shock-wave solution
[8] for an ideal gas, but it is here modified by the van der
Waals excluded volume. [A similarity solution exists
[12] in which Rg(t) = ~t, —t ~' with a=0.5; for the per-
fect gas, a =0.72 [8].]

The second column of Fig. 2 shows the results for
t =td =l, +0.19898 ns and l, =l, +0.21641 ns. After
focusing at 0, a reflected shock wave forms, as the solu-
tions for t =td show. This reflected shock expands to
meet the air moving towards the center. The result is
again similar to that of Guderley's solution. But the
reflected shock, which satisfies a jump relation modified
by the van der Waals excluded volume, shows an increase
of 7 Jo in density, rather than the 230% increase of the
Guderley solution. The shock wave moves outwards with
an average speed of about 2.5 x 10 m s '. It strikes the
boundary of the bubble about 0.018 ns after focusing; see
the solutions for l =t, .

The interaction of the shock wave and the bubble
boundary may be thought of as a Riemann problem.
Since the pressure inside the bubble boundary is about
10' Pa and the external pressure is only about 10 Pa,
the shock wave passes through the surface of the bubble
and propagates outwards through the surrounding water.
A rarefaction is created in the air which returns towards
0, and the inward motion of the bubble boundary (the
contact discontinuity) is reversed. Thus, at r =r„ the
bubble attains R;„=0.55 pm, which is 0.04 pm less
than the value obtained from the adiabatic calculation.
The solutions for t =If =t, +0.22235 ns in the next
column of Fig. 2 confirm the formation of the inward
rarefaction wave.

The results at t =tg =t, +0.26172 ns and t =tp =t,
+0.377 ns show that, following the inward moving rare-
faction wave, a second imploding shock wave forms which
is much weaker than the first shock. After the second
shock wave focuses, a second reflected shock emerges
from 0. This is seen in the last column of Fig. 2 for solu-
tions at t =l; =t, +0.396 ns and t~ =t, +0.417 ns.

Figure 3(a) shows the evolution of the bubble radius R
and the shock-wave locations R~ during the time interval
described above. Figures 3(b) and 3(c) show the density
and the temperature on the shell where p is greatest as
functions of 1. As in Guderley's solution, the density
jumps discontinuously at 0 when the shocks focus. In
Guderley's solution, the density increases by a factor of
20. 1 but in our case the factor is only about 7, because p
must always be less than p . The temperature jumps
discontinuously at the time of focusing. It becomes
infinite in theory but, because of the finite resolution of
the computation, finite in practice. The luminosity of the
bubble is shown in Fig. 3(d). Consistent with the obser-
vations [5], a peak of about 30 mW was obtained, but its
duration was only about 1.2 ps (as measured by the
epochs at which half peak intensity is reached). It occurs
about 0. 1 ps after t =td, approximately 0.018 ns before

1.0 800

(b)

2

0.5-

I I III I

b c,g g

I
I

I

I
I

I
I

I
I

I
I
I

I I
I g

I

1j
t

h i j

109 30

2 2O-

O

1O-

102

20.4901 20.4908
0
20.4901 20.4908

Time (ps)

FIG. 3. Case (I ): nonadiabatic solution. In (a), the bubble
radius and the shock locations (dashed) are plotted as functions
of time; the times r, —rj employed in Fig. 2 are marked. In (b),
(c), and (d), the maximum density, the temperature at max-
imum density, and the luminosity of the bubble are plotted as
functions of time.

the bubble attains R;„. During this peak, q = 1, i.e. , the
air is almost totally ionized. The major contribution to I
arises from the vicinity of r =0.07 pm where T is be-
tween 10 and 10 K. It is worth noting that the singu-
larity that occurs at (r, t) = (O, t, ) makes virtually no con-
tribution to L(t) and it is therefore hoped that the physi-
cal unreality of these infinities does not greatly influence
the computed L(r).

In summary, in case (I), the air within the bubble
behaves very differently from the predictions of the adia-
batic solution. A strong imploding shock front is formed
during the collapse and, after its reflection from 0, the
temperature behind it becomes so large that the air ion-
izes, resulting in a plasma that emits a burst of light.

Consider next case (2). Figure 4 repeats for case (2)
those shown in Fig. 3 for case (I ). Very striking here is
the much greater prominence of the second shock wave,
which again behaves much as in Guderley's solution.
Correspondingly, L(t) exhibits a marked second peak,
comparable with the first (= 3 mW); see Fig. 4(d). The
times at which the first and second shock focus at 0 differ
by approximately 1.2 ns, which is about 6 times longer
than in case (I ), probably because here R;„=2.54 pm is
about 5 times larger than in case (I); also R,.„=98 pm.
It is remarkable that such apparently small changes in
the conditions of excitation create such large differences
in response. This sensitivity was also found for case (3):
No shock is formed and the bubble behaves almost adia-
batically.
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FIG. 4. Case (2): nonadiabatic solution. See caption to Fig.
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