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31 MA+ 1993

Eric Bosch and Willem van de Water
Physics Oepartrnenr, Eindhoven University of Technology, P. O. Box 5I3, 5600 MB Eindhoven, The Netherlands

(Received 1 February 1993)

The spectral fluctuations of random capillary wave fields appear to be intermittent. This intermittency
is related to local creation and annihilation of coherent structures: ordered regions that have definite
symmetry. Both the occurrence of non-Gaussian tluctuations and the existence of (quasi) long-range or-
der question the applicability of a thermodynamic description of spatiotemporal chaos in two dimensions.

PACS numbers: 47.35.+i, 47.52.+j

The Faraday experiment is the parametric excitation of
ripples on the surf'ace of a vertically oscillated quid [1].
We discuss the regime where the wavelength k of the rip-
ples is much smaller than the linear size I of the con-
tainer and where the state of the surface becomes in-
dependent of the shape of the container boundary.
Theory and experiment agree that for increasing ampli-
tudes 2 a flat surface yields a stationary square wave
field at a critical amplitude 2, [2]. At larger amplitudes
the square pattern becomes time dependent and loses its
spatial coherence. The onset of spatiotemporal disorder
is at a critical reduced amplitude e=e„e=(A —2, )/2, .
The resulting pattern, being disordered in both space and
time, bears a striking resemblance to hydrodynamic tur-
bulence and the question is whether this resemblance
could be made quantitative. In this Letter we show for
the first time that spectral fluctuations of the pattern are,
in fact, intermittent, much as are the fluctuations of the
velocity field in turbulence.

Spatiotemporal chaos has been studied in one-dimen-
sional convection experiments that have suggested the ap-
plicability of a thermodynamic description [3]. The idea
is that the local dynamics provides enough randomness so
that larger scales (i.e. , scales larger than the coherence
length g but much smaller than the size of the system I)
that depend on data from many coherence lengths exhibit
simple statistical properties [4]. Another key observation
both in simulations of amplitude equations in one dimen-
sion [5] and in 1D convection experiments [6] has been
that the transition to spatiotemporal chaos follows the
scenario of directed percolation. However, the value of
the critical exponents found was not universal.

Disordered Faraday crispations were reported by Ezer-
skii, Korotin, and Rabinovich [7] and analyzed quantita-
tively by Tu%1aro and Gollub [81. The measured tem-
poral and spatial correlation functions showed a critical
slowing down of the surface characteristic frequency at
e=e, that was accompanied by a sudden loss of transla-
tional and orientational order. A further study by them
has explored the use of spectral fluctuations to character-
ize the random surface [9].

An attractive property of the Faraday experiment is its
short time scale. At the transition point it is seconds
rather than hours in convection experiments. A profound
problem, however, is the nonuniformity of the amplitude

e over the fluid surface. Experiments at large values of
L/X have to be done at frequencies of the order of 200
Hz. At these frequencies it is a true challenge to suppress
resonances of the mechanical structure that supports the
fluid layer and transduces the vibrations of the exciter.
Our experiment has a L =130 mm diam container that is
filled to a level of 10 mm with silicon oil [10]. The con-
tainer is mounted on a conical structure that transduces
the force from a Bruel and Kjaer 4808 vibration exciter.
Both the bottom and the top are 5 mm thick glass plates.
The structure was designed to suppress parasitic vibra-
tions. The amplitude is measured interferometrically
with a relative accuracy of 2x10 . By arranging the in-
terferometer in a differential fashion, amplitude differ-
ences between two opposing points on the perimeter of
the container could be measured. At our excitation fre-
quency of Q =160 Hz, the distortion of the container is
less than 1% [1 ll. This number, therefore, imposes a
limit on the homogeneity of the control parameter in our
experiment. Only in a few other cases in the literature
has a number for the amplitude inhomogeneity been men-
tioned; the smallest number quoted there is 2% [12].

The temperature of the working fluid is stabilized at
294.00+ 0.03 K; the frequency is constant to 1 part in

10 . The surface waves, with X =2.83 mm, are visualized
by shining a parallel beam of light through the transpar-
ent bottom plate and observing the wave image on a
diffusing screen attached to the top glass plate of the con-
tainer. The image is registered by a home-made charge-
coupled-device (CCD) line camera that is tightly syn-
chronized with the driving frequency so that images are
taken at exactly equal wave phase. The 512 pixels of the
camera are illuminated for one quarter of the wave
period; the intensity of the signal is digitized with 12 bits.

The scenario that leads to a disordered surface state
starts with a stationary square pattern. This pattern be-
comes time dependent at t. =0.09 through nucleation of
defects. At a slightly larger value of the control parame-
ter (e=0.13) a triangular state is born that consists of
three running waves and is necessarily time dependent.
The power spectrum develops a series of peaks at multi-
ples of 0.9 Hz on a sloping background, but there is no
low-dimensional chaos. Finally, at e =0.25 this triangu-
lar state gives way to a disordered surface. The observed
scenario is in accord with that found by Christiansen, Al-
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FlG. 1. Dots: characteristic frequency of Faraday crispa-
tions as a function of reduced driving amplitude e. A regular
triangular pattern exists in the interval [0.13, 0.25]. Dashed
line: fit co=(e —e, )~ with e, =0.09 and P =0.8.

strom, and Levinsen [13]. It diAers from that observed in

a square container where the intervening triangular state
appears to be absent and the square pattern becomes
chaotic directly [8]. As the control parameter e is in-

creased and the fluid surface moves through the above
sketched scenario, the characteristic fluctuation frequen-
cy co increases. The frequency co shown in Fig. 1 was
determined from the decay of information functions [14]
computed from time series of 64000 point samples. At
the critical amplitude e=e, (=0.09) the fluctuation fre-
quency rises as ru=(e —e, ), where the exponent P
(=0.8) is slightly but significantly smaller than 1. Be-
cause Fig. 1 is the result of several scans up and down the
e scale, it demonstrates the absence of hysteresis. Quite
recently it has been suggested that the order-disorder
transition is a first-order phase transition [151, this is,
however, clearly contradicted by Fig. 1.

Correlation functions are not independent of the distri-
bution functions of the quantities whose correlation is
measured. In our case the intensity u(x) in the wave im-

age is a strongly nonlinear function of the actual wave
heights; it is determined by the focusing and defocusing
of incident light by the surface ripples. This causes high-

ly skewed probability distribution functions of the light
intensity measured in a point. An estimate of the surface
coherence that is not dependent on the shape of the distri-
bution function of u(x) is the mutual information I [14].
It is directly expressed in terms of the joint probability
P(u~, u2) that two points at position x~, xq have their in-

tensities equal to u~ and u2, respectively, as 1(xi,x2)
=fdu ~ du2P(u ~, u2)log2[P(u ~, u2)/P(ui)P(u2)]. Figure
2 shows the line-averaged spatial information function
I(x) =[1/(L —x)]f "dx'I(x', x'+x). It is based on
32000 line samples of the surface image. At the lowest
value of t. , where the surface is slowest, they were taken
with a sampling frequency of 2 Hz. Figure 2 shows the
height of the wave maxima in 1(x), x =iX/2, i =1,2, . . . .
There is a rapid (exponential) decay over the first k/2
where I(x) drops by approximately a factor of 20. The

FIG. 2. Full lines: mutual information I as a function of dis-
tance x/X, where X is the crispation wavelength. The reduced
amplitude e is 0.25, 0.30, 0.35, and 0.50 for curves 1 through 4,
respectively. l(x/k) oscillates with period —,'; the line connects
its local maxima. Not shown is the rapid decay of I (over a fac-
tor 25 for. curve 3) in the first half wavelength. At x/X & l0 the
noise in I gives rise to spurious maxima. Dashed line: a fit of
t(x) by x

information functions, which we view as a better measure
of the surface coherence, clearly illustrate the existence of
long-range correlations, even at the largest e value
(e =0.50) [16]. Except at the lowest value of e, the infor-
mation function has a conspicuous algebraic decay:
1(x)=x, with an exponent 8 (=0.8). Given the limit-
ed dynamical range of the decay in Fig. 2, it is the ex-
istence of long-ranged correlations rather than the precise
shape of I(x) that we want to emphasize.

As the basic surface structure is wavelike, it is most ap-
propriate to study its stochastic properties in the spectral
domain. Figure 3 shows the average wave spectrum at e
=0.45. It was obtained from an average over n =32000,
512-pixel line samples u/(x), j= l, n whose spectra,
u/(k) =je '" uj(x)H(x)dx, were determined using a
standard Hanning window H(x) for each line sample.
The average spectrum is (~u(k)

~
) =(1/n)g~"=~~u/(k)~ .

For both the spectrum and the correlation function the
individual line images u;(x) were normalized by subtract-
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FIG. 3. Power spectrum &~u(k)~ & of surface fluctuations
measured on a line at t =0.45.
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ing the long-time averaged mean (u(x)) (which was
featureless) and dividing by the rms fluctuation [(u(x) )
—(u(x)) ] ' . The spectrum bears a strong resemblance
to one computed from a numerical simulation of spa-
tiotemporal chaos in the Kuramoto-Shivasinsky equation
[17]. It is flat at small wave numbers and drops sharply
at k =ko. The flat part of the spectrum might be taken
as a sign for equipartition of energy.

Of much more interest than the average spectrum is

the statistical nature of the fluctuations of the instantane-
ous spatial spectra. Small wave vectors are an average
over many coherence lengths and therefore provide a
coarse graining. The spectral fluctuations at these wave
numbers can reveal whether the coarse-grained system
moves close to equilibrium. In that case, the spectral
fluctuations would be Gaussian. In order to show the de-
viation of Gaussian statistics we measure the normalized
fourth moment (the kurtosis) of the spectrum. It is

defined as G4(k) =([Reu(k)] )/([Reu(k)] ), and is

identically equal to 3 for Gaussian wave signals Reu(k).
Figure 4 shows G4(k) for a range of e values. At the

lowest value of e (a=0.25), there are large deviations
from Gaussianity at the I/J3 wave number of the tri-
angular pattern and its higher harmonics. We emphati-
cally notice that the pattern at this value of t. is chaotic
and has a decaying correlation function (see Fig. 2). At
larger values of the amplitude the sharp peaks in the flat-

ness merge into a broad feature centered at k/ko= I/J2.
These k values are related to macroscopic patches of a
definite (triangular and square) symmetry but random
orientation that are seen to briefly exist in the disordered
state. Incidentally, the measured third-order moment G3
is indistinguishable from zero.

Those coherent structures strongly afl'ect the statistics
of the spectral fluctuations. Figure 5 shows the probabili-
ty distribution function (PDF) of Reu;(k) at k/ko=0. 31
and 0.70, respectively. While the PDF is Gaussian at
k/ko=0. 31, it has wide intermittent tails at k/ko=0. 70.
We also believe that those~ structures are responsible for
the long tails of the coherence functions (Fig. 2). Of
course, the deviations from Gaussian behavior are con-
sistent with the long-range correlations of the surface
fluctuations. Our results should be viewed in light of a
recent discussion whether chaos in extended systems pro-
vides only local disorder [15]. Both the observed devia-
tion from Gaussianity and the existence of long-range or-
der suggest that chaos in the system is in fact not local.

It is well known that in hydrodynamic turbulence inter-
mittency shows in non-Gaussian PDF's of velocity dif-
ferences. For the first time we have shown that spa-
tiotemporal intermittency in two dimensions is also asso-
ciated with intermittent probability distribution func-
tions. Earlier work has reported compatibility with
Gaussian statistics of spectral fluctuations in the spa-
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FIG. 4. Full lines: the kurtosis G4(k) of spectral tluctuations
as a function of wave number k/kpt where ko is the crispation
wave number. The value of 64 in the case of Gaussian Auctua-
tions (G4=3) for each curve is indicated by a dashed line. The
dots at a and b point to the corresponding probability distribu-
tion functions shown in Fig. 5.

FIG. 5. Full lines: probability distribution functions of spec-
tral fluctuations at k jk0=0.31 and 0.70 for curves (a) and (b),
respectively. The distribution functions were measured at
=0.45 (see Fig. 4). Dashed lines: Gaussian distribution func-
tions.
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tiotemporal chaotic regime [9]. However, the number of
samples we have collected is 2 orders of magnitude
larger, which enabled us to see the det. iations of Gaussian
statistics in this regime.
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