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Wavelength Doubling Bifurcations in Coupled Map Lattices
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We report an interesting phenomenon of wavelength doubling bifurcations in the model of coupled

(logistic) map lattices. The temporal and spatial periods of the observed patterns undergo successive

period doubling bifurcations with decreasing coupling strength. The universality constants a and 6 ap-

pear to be the same as in the case of period doubling route to chaos in the uncoupled logistic map. The
analysis of the stability matrix shows that period doubling bifurcation occurs when an eigenvalue whose

eigenvector has a structure with doubled spatial period exceeds unity.

PACS numbers: 05.45.+b, 47.20.Ky

The study of nonlinear dynamical systems has led to a
considerable understanding of low dimensional chaotic
systems. However, the understanding in the case of spa-
tially extended systems is far from satisfactory. One of
the heuristic ways in which the understanding of low di-
mensional chaos can be utilized in understanding spatial-

ly extended systems is to couple such systems on a lattice
and study the coupled system, e.g. , the oscillator chains,
coupled map lattices, and cellular automata. The model
of coupled map lattices shows many interesting phenome-
na such as kink dynamics, solitons, frozen random pat-
terns, periodic patterns, traveling wave solutions, inter-
mittency, chaos, etc. [I]. The phenomenon of spatiotem-
poral intermittency in Rayleigh-Benard convection has
been modeled by coupled map lattices [2]. There have
been several studies of temporal period doublings in cou-
pled map lattices since its introduction by Kaneko [3]. A
renormalization group approach for these period dou-
blings has been developed by Kuznetsov [4].

Here we report a novel and interesting phenomenon in

the model of coupled map lattices. It may give insight
about the routes to spatial inhomogeneity in spatiotem-
poral systems such as turbulence. The phenomenon is a
spatial analog of the well known route to chaos via tem-
poral period doubling. We consider a one dimensional
coupled map lattice with logistic maps coupled symmetri-

!
cally. The model has several spatially and temporally

periodic stable solutions [5,6]. Starting with a stable
solution with a spatial period two we find that the tem-

poral and spatial periods of the observed patterns undergo
successive period doubling bifurcations as the coupling
strength is decreased. Using the standard procedure, the
universality constants a and 6' are obtained and they ap-
pear to be the same as in the case of period doubling
route to chaos in an uncoupled logistic map [7]. We also
analyze the stability matrix and determine the condition
for spatial period doubling bifurcations to occur.

Let us consider the following model of one dimensional
cou pled map 1 at tices:

x, +)(I)=(I —e)f(x, (i))+ —,
' ef(x, (i+ I ))

+ —,
' ef(x, (i —I )),

where x, (i) is the variable associated with the ith lattice
point at time I. taking values in a suitably bounded phase
space, i = I, . . . , tn. For the map f we take the logistic
map, f(x) =px(1 —x), where 0~ x ~ I and 0 ~ It ~ 4.
The parameter e represents the coupling strength and
0 ~ e ~ 1. For e =0 the dynamics of the lattice is one of'

the uncoupled logistic maps.
Let S(N) denote a solution of Eq. (I ) with time

period r and space period IV. Consider the solution
52(2) =[x~(1),x~(2)j with x~(1)ax~(2). It is possible
to show that there is a range of parameter values where
52(2) is a stable solution and is given by

(p + I
—2It e ) +J(p + I —2p e ) (p —31 —2It e+ 4e)

x, (1)=
2p(l —2e)

(2)

This solution has time period two and xq(1) =x~(2),
xq(2) =x(1). It may also be treated as a traveling wave

solution with velocity one. The stability of this solution
can be determined by the eigenvalues of the stability or
the Jacobian matrix. The stability criterion is discussed
afterwards.

Let us consider the case when p =p =3.569. . . which
is the accumulation point of the period doubling cascade

I
in an uncoupled logistic rap and the coupling parameter
e is allowed to vary. The period-two solution 52(2) is

stable in the range co=0.13418. . . to e] =0.038890. . .
[see Eqs. (9) and (10)]. These values are listed in Table
I. For e( e~ the solution Sq(2) becomes unstable and

undergoes a period doubling bifurcation. A new solution
54(4) with space period four and time period four be-
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TABLE I. The values of e„at successive bifurcation points
for different n. The table also lists values of d, a„and 6 .

Jn

1.0

0.8
0.038 890 8
0.009 765
0.002 182
0.000472
0.000 102
0.000 022 3

0.349 32
—0.11492

0.044 75
—0.018 37

0.007 28
—0.002 92

—3.0396
—2.5682
—2.4355
—2.5216
—2.4884

3.855
4.434
4.621
4.642

04

comes stable. The solution S4(4) is stable in the range e~

to F2=0.0097649. . . . At e2 we have one more period
doubling bifurcation leading to the period-eight solution
Ss(8) for e ( eq. Further numerical investigations show
that the period doubling cascade continues and probably
leads to the accumulation point at e =0.0. At each bi-
furcation point both the space and the time periods dou-
ble. Since we have a spatial period doubling cascade
starting with space period two, it was necessary to choose
the lattice size in powers of two in numerical simulations.
The maximum lattice size used was 1024. The stability
of the solutions was checked by giving small perturba-
tions and also by eigenvalues of the matrices M(0) [Eq.
(5)].

In Table I the e„values at the successive bifurcation
points are listed. Let B„be given by

&n &n+ ]

En+ ] 6n+2
(3)

The values of 6„are listed in Table I. Though these
values are still inadequate to conclude about the asymp-
tote 6=6, they are clearly consistent with the value
6'=4.6692. . . obtained from the period doubling sequence
of an uncoupled logistic map as a function of p [7].

In Fig. I we plot the values of x, (1) for diITerent values

of t, as a function of |.. The bifurcation diagram has a

striking similarity to the one in the case of an uncoupled

logistic map as a function of p. To determine the scaling
parameter a„, we determine the value of e for each period
for which one value of x, (l ) is 0.5. This defines the ana-

log of the superstable orbit for an uncoupled logistic map.
Let d„be the separation of the point x, (1)=0.5 from the

nearest x value (see Fig. I) for the period 2". Define the

scaling parameter a„by

&n =dgldn + I

The values of d„and a„are listed in Table I. We again
note that the values of a„are consistent with the asymp-
totic value e=a =2.5029. . . for the uncoupled logistic

map as a function of p [7].
The period doubling solutions that we observe can also

be treated as traveling wave solutions. The velocities of
the solutions with periods 2, 4, and 8 that we have ob-
tained are 1, 3, and 5, respectively. For higher order

0.2 '
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FIG. 1. The variables x, (l ) at one site at difl'erent times as a

function of t.' at p =p

Now consider a closed chain C I,~ of length kA', k

=1,2, . . . . Obviously the spatially periodic sequence

S,(N, k) = j(R i, . . . , Ri)p, . . . , (R„.. . , R, )i„

(R), . . . , R))k, . . .}

of wavelength N built from the states [R,} as the building

blocks is a solution of Eq. (I) for the closed chain Ck~
with temporal periodicity r. Here the ordered pair
(R, , . . . , R, )I, represents a state made up of k replicas of
the state R, . We call S, (N, k) the k replica solution of
S,(N, I ). The stability criterion for the k replica solution

was discussed in Ref. [51. It was shown that the problem
of the eigenvalues of the kN x kW stability matrix of the

k replica solution can be simplified to the analysis of k

matrices of size W x IV which are constructed using the
stability matrix for the solution S,(N, I ), the building

block of spatial periodicity. The problem can be further
simplified for a traveling wave solution [6]. If v is the ve-

locity of the traveling wave, then the problem of stability

periods the observed velocity is 11. We note that the se-

quence of traveling wave speeds (1,3,5, 11) corresponds to
the succession i„+]=i„+2&„—]. This is characteristic of
the main frequency in the frequency doubling cascade in

nonorientable manifolds [8].
We now consider the stability of the periodic solution

S,(N). This problem can be simplified by using the re-

sults of Refs. [5] and [6]. We first consider a one dimen-

sional lattice chain CM of length I with cyclic boundary
conditions; i.e., the first and the Mth lattice points are
neighbors of each other. Let R, =(x, (1), . . . , x&(N))
denote the state of the system of the chain C'~ at time t.
Let S, (JV, I) denote a solution of Eq. (I) with temporal
periodicity i for the chain C~, i.e.,

S,(N, I ) = [R ), Rp, . . . , R„R),Rp, . . .} .
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analysis of the k replica solution reduces to the analysis of the eigenvalues of the N && N matrices [6]

M (0) =(11g) 'Jg,

where 0=0,2x/k, . . . , (k —1)2+Ik. Here He and Jz are N &N matrices given by

0 I'0

0 0
0 0

and

0 0 I 0,

(1 —e)f '(x
i (1)) —,

' ef '(x
i (2) ) —,

' ef '(x
) (N ) )e"

2 ef '(x
( (1 ) )

—,
' ef'(xi(1))e

(1 —e)f'(xi(2) }

(1 —e)f '(x
I (N) )

Now the k replica solution is stable if all the eigenvalues of the matrices M(0) have magnitude less than one. As
k ~ or as the size of the lattice increases, 0 takes continuous values between 0 and 2x. It is easy to show that it is

sufficient to check the eigenvalues of M(0) in the range 0 ~ OS 7r to determine the stability of the solution as k-
Let 5, (N) =limy S,(N, k ).

Let us apply the above stability analysis to the period-two solution Sz(2, k) [Eq. (2)l which has velocity one. For
N =2 and t =1, matrices M(H) [Eq. (5)] are given by

0 e"
M(0) =

(1 —e)f'(xi(1))
—,
' e(1+e ")f '(x

) (1))

—,
' e(1+e")f'(x)(2))

(1 —e)f '(x
i (2) )

(8)

We first consider the stability of the solution for k = I,
i.e., the solution 52(2, 1). The stability criterion is that
the eigenvalues of the matrix M(0) have magnitude less
than one. From the eigenvalues we find that the solution
52(2, 1) is stable in the range ea ( e ( e', where

I 3
2 p(p —2)

2p —4p —3 —(8p —16p+9) 'i

4p(p —2)

At the lower limit e, one of the eigenvalues of M(0) be-
comes —I, while at the upper limit eo, both the eigenval-
ues are complex and have unit magnitude. For k =2 we
must consider both 0=0 and x, i.e. , the matrices M(0)
and M(rr). The analysis of the eigenvalues of M(x)
shows that the stability range of e values shrinks, with the
upper limit t 0 remaining unchanged and the lower limit

shifting to e~, which is one of the solutions of the equation

At e~ the eigenvalues of M(rr) are + 1. For k ) 2 the ei-
genvalues of M(g) with 9 in the range 0 to x must be
considered. By obtaining eigenvalues for 0 values for
k =3,4, . . . , we find that there is no further reduction in

the stability range (e~, eo) of e values for the solution
5&(2 k ) as k ~ [5]. We have also numerically
checked the stability of the solution in this range by ran-
dom perturbations of the solution.

Let us consider the point e~ where we have a period
doubling bifurcation and for t. & e] we have a stable solu-
tion 54(4) of period four. At e=e~ the eigenvalues of the
matrix M(n) are ~ 1. To understand how an eigenvalue
of M(x) shows a tendency towards period doubling, con-

!
sider the 4x4 matrix H whose eigenvalues determine the
stability of the solution S2(2, 2) [6],

000 I

I 000
0100
0010

(1 —e)f '(x (1 ) )

—,' ef'(xi(2))

2 ef'(xi(l))

2 ef'(xi(2))
—'ef'(xi(1)) (1 —e)f'(x (2)) 2 ef'(x((1))

(1 —e)f '(x, (1))

2 ef'(x)(l))

—,
' ef '(x

i (2) )

~ ef'(xi(2))

(1 —e)f'(xi(2))
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Let (a, , b; ), i =1,2, be the eigenvectors of M(0) [Eq. (8)]
with eigenvalues A; and let (c;,d;) be the eigenvectors of
M(tr) with eigenvalues v;. It is easy to verify that
(a;,b;, a;,b;) are the eigenvectors of W [Eq. (11)]with the
eigenvalues A; and (c;,d;, —c;, —d; ) are the eigenvectors
of W with eigenvalues v; [9]. Thus, we see that the mag-
nitude of eigenvalues of M(tr) exceeding unity is a clear
signal for the instability of S2(2, 2) towards a period dou-
bling bifurcation. Similar arguments can be used for the
eigenvectors with larger values of k, e.g. , (c;,d;, —c;,—d;, c;,d;, —c;, —d;) are eigenvectors of the 8 x 8 stabili-
ty matrix for 52(2, 4) (k =4) with eigenvalues v;.

Subsequent period doubling bifurcations take place in a
similar fashion. At each bifurcation point one of the ei-
genvalues of the matrix M(tr) becomes one and the ei-
genvalues of matrices M(0) with other values of 0 are
still less than one.

Let A denote the eigenvalue with largest magnitude of
the matrices M(0). We define the Lyapunov exponent X

as

In Fig. 2 we plot the value of Lyapunov exponent as a
function of t. We observe a graph similar to the one in

the case of period doubling transition to chaos in an un-

coupled logistic map as a function of p with the
difference that here X remains finite since the largest
magnitude eigenvalue is never zero. Starting from zero
at a bifurcation point the Lyapunov exponent decreases
as t. decreases, reaches a minimum, and then again arises
to zero at the next bifurcation point.

We have also analyzed the behavior at other values of
p. For p & p we see a finite number of bifurcations as e
decreases until one reaches the correct limit at e =0 (i.e. ,

the lattice has the same wavelength and temporal period
as the temporal period of the uncoupled case). For the
values of p & p we see a similar phenomena of wave-

length doubling bifurcations. However, there are diS-
culties in determining the bifurcation point as p increases
[10]. Kaneko [11] has reported several wave patterns
and Brownian motion of defects in the region p & p
Solutions with almost temporal period two and temporal
period four are observed in this region. Further detailed
numerical studies are necessary to see how our results ex-
tend to this region.

We have also investigated the region in the t. -p plane
near the period three window in an uncoupled logistic
map. Period doubling bifurcations similar to those re-
ported above are seen as t.' is decreased.

Thus, we have found a wavelength doubling phenome-
non in coupled map lattices. This is a spatial analog of
the normal temporal period doubling route to chaos. This
wavelength doubling route to spatiotemporal chaos can be
very important in our understanding of different phenom-
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FIG. 2. The Lyapunov exponent k as a function of e at
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ena seen in spatiotemporal systems. Experiments on
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annular geometry may be one of the systems where the
phenomenon described above may be observed [12].
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