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Unpolarized particles with spin may spontaneously polarize during their Aight through a resonant cav-
ity, due to their interaction with the cavity's quantized radiation field. This effect, of purely electromag-
netic origin, could, if not recognized as such, be mistaken for a parity violating weak interaction effect.
For a better understanding of this effect we have simulated it, as well as the related quantum field effects
of collapse, revival, and hidden coherence, with a beam of polarized neutrons and a set of classical mag-
netic fields.

PACS numbers: 42.50.—p, 28.20.—v, 32.30.Dx

The two-level atom coupled to a quantized radiation
field is the subject of many recent investigations in the
field of quantum optics. In the rotating wave approxima-
tion this system is described by the Jaynes-Cummings
model [1]. The model predicts a number of interesting
effects, like a collapse [2,3] and, later on, revivals [3,41 of
the Rabi oscillations, and "hidden coherences" [51. Ex-
perimentally a first revival of an atomic wave function
was observed several years ago with the one-atom maser
[6]. Recently, it was also pointed out [5] that this two-
level atom will, in the course of time, spontaneously de-
velop a perfectly coherent state which is completely in-
dependent of the initial state of the atom (and also in-

dependent of the separation of the two levels).
It is well known that the two-level atom in a radiation

field is homomorphic to a spin one-half particle precess-
ing in magnetic fields [7], for instance in a magnetic reso-
nance setup. When the effect of spontaneous coherence
quoted above is translated into the spin precession pic-
ture, it means that a spinning particle in a resonator will

develop a large polarization which is independent of the
initial spin state of the particle. Hence this polarization
also appears when the initial state of the particle is unpo-
larized. We call this process the spontaneous polarization
of particles. The peak polarization achievable is indepen-
dent of the size of the Zeeman splitting. The angular
momentum balance in this process is provided by the ro-
tating quantized fields.

This electrodynamic effect of spontaneous polarization
is interesting in its own right. But it also deserves investi-
gation in a different context: The spontaneous rise of a
polarization in an initially unpolarized system is common-
ly regarded [8] as an indicator of parity nonconservation
(PNC), which is a unique feature of the weak interaction.
Similarly, when a spin points into a direction which is
different from the one expected classically then this may
also be due either to PNC [9] or to electromagnetic
(hence parity conserving) quantum field effects.

These general considerations incited us to explore the
quantum radiation problem, which usually is the domain
of quantum optics, with the means at our hands: A free
neutron in a classical magnetic field is one of the simplest

systems in physics. Still, it allows one to study a number
of elementary and far-reaching concepts and phenomena
in a very transparent way, like spinor rotation [10] and
spinor superposition [11], Berry's phase [12], the "dress-
ing" of particles [13],or bistability [14]. So we wondered
whether we could also simulate the "grainy" character of
quantized fields, such as to reproduce the quantized held
effects mentioned above with a beam of polarized neu-
trons interacting solely with classical fields, in order to
elucidate the intricate mechanism of the particle-field in-
teraction with a simple and transparent model. Of
course, we cannot expect to reproduce all quantized field
effects with one set of classical fields: A particle interact-
ing with quantized fields is just a small subsystem of a
large coupled many-particle system and cannot be treated
in an isolated way.

The Jaynes-Cummings Hamiltonian for a particle with
gyromagnetic ratio y in a static magnetic field Bo reads

H = —, h yB ocr, + h coa ta + h g (a t cr + o.+a ),
with Pauli matrices o., creation and destruction operators
a and a for photons of frequency m, and the photon
number operator a a (with eigenvalues n =0, 1,2, . . . ).
The magnetic coupling constant g for the particle-photon
interaction is related to the classical rf amplitude Bi as
yBi =2gn ' . The average photon number n can be elim-
inated by setting nb cd =8~ V/2po, with the resonator
volume V. In resonance, m=yBo.

In the following we shall make a number of statements
on the solutions of (1) and look how they can be simulat-
ed by our neutron system. The first, very simple state-
ment is as follows.

(i) The (longitudinal) polarization (cr, ) of an ensemble
of particles, initially in the "up" state and interacting
with a resonant quantized radiation fteld, behaves as if
each particle was independently precessing about one of
the discrete classical magnetic ftelds Bt (n) = (2g/
y) Un+1.

I or instance, for a Glauber coherent photon state with
Poissonian distribution of photon number n the solution
of (1) for an atom initially in the upper state reads [4]
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(cr, (i)) =e " g cos(2g Jn+ I t) .
„=0 nt

(2)

Statement (i), however, is valid for any weight distribu-
tion P(n) of the photon number n

In the one-atom maser a two-level atom in the upper
state enters the resonator at E =0, interacts with the
quantized field during the time of passage t, and leaves
the resonator for final state analysis. In our simulation
experiment a beam of thermal neutrons from a neutron
guide of the Garching research reactor FRM, polarized
to 95%, enters a magnetic field region, precesses about a
classical field during the time of passage I, , and passes a
second neutron polarizer for spin analysis. To simulate
the 3aynes-Cummings model the fields BI(n) need not be
time dependent because the rotating wave approximation
allows us to go to the rotating frame [in which, in reso-
nance, Bo vanishes and BI (n) is stationaryl without
affecting (a, (t)). Furthermore, the various fields Bi(n)
need not be applied all simultaneously, but can be applied
successively, provided the neutron counts are all added up
in one single counter.

The static fields Bi(n), typically of mT amplitude,
were generated by a simple solenoid of diameter 9 cm,
wound around the neutron beam over a length of 50 cm.
The power supply regulation had to be of sulcient quali-
ty to allow the precise setting also of the very small values
of the difference fields ABI(n) defined below. The initial
direction of neutron polarization was along the vertical z
and at right angles to the common horizontal neutron
beam and BI(n) field axis X. The counting time for each
BI(n) was set proportional to the weight P(n).

To measure collapse and revival of (IT, ) one needs to
vary the interaction time f. or, alternatively, the coupling
strength g. For time-of-flight measurements the thermal
"white" neutron beam of mean velocity 1300 ms ' was
pulsed with the aid of a mechanical chopper wheel to give
35 ps long bursts at 15 ms interval. The arrival time of
the neutrons at the counter, situated 5.3 m downstream,
then is proportional to the interaction time t. The neu-
tron counts were stored in a multiscaler unit triggered by
the chopper wheel. As each time-of-flight spectrum only
covered a limited time interval the measurement was re-
peated with different settings of the overall strength g of
the magnetic B ~

-field values, and the data sets were
joined.

The resulting time-of-flight spectrum for n = 10 is

given in Fig. 1(a), together with a fit by (2). Our setup
merely provides a Fourier transform of the discrete field
spectrum shown in Fig. 2(a). But this is exactly what a
quantized field would do to a particle's polarization (IT, )
in a spin-precession experiment, or to an atomic inversion
in the one-atom maser. The spectra of Fig. 2 were de-
rived by exact diagonalization of (I ).

The complicated intertwining of the quantized fields
and the particles becomes apparent only when one looks
at the rransierse polarization (cd). In Ref. [5] it was
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FIG. l. (a) The response of polarization (IT, ) to a Glauber
coherent field, displaying collapse and revivals; (b) hidden
coherence in the collapse region. Bars: simulation with neu-
trons; lines: theoretical expectations.
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FIG. 2. Distribution of the discrete classical field values
needed to simulate collapse, revivals, hidden coherence, and
spontaneous polarization. (a)-(c) coherent, (d) thermal radia-
tion. Mean photon number is n =10. Distribution (a) is used
for simulation of (o, &, (b) and (d) for (a~), all spin up, and (c)
for (cr~), spin down. Note that in (b) the difference spectrum
lies at positive field values, and in (c) at negative field values.

pointed out that at the time when (cr, ) has completely
collapsed an almost complete atomic coherence will have
built up, visible in Tr(p ), where p is the atom s density
operator. This "hidden coherence" must be all due to
(IT~), so our second statement is as follows.

(ii) In the collapse region a transierse polarization
(o~) builds up slowly, reaches a maximum of nearly
l00% in the middle of the collapse region, and decays
agaI n.

At first sight this behavior is strange because (in the
rotating frame) this transverse polarization (ITJ) is almost
stationary in spite of the presence of the Bl fields. How-
ever, this phenomenon can readily be explained by work-
ing out the system's wave function.

(iii) The transverse polarization (crz) behaves as if
each particle was independently precessing about one of
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the mean fields 8~(n) =
2 [8~(n)+8~(n+ I )], or one of

Hence, the phenomenon of hidden coherence can be
described as a slow beating between neighboring Rabi

the neutrons, initially with spin up, to the field amplitudes
8~(n) and 68~(n) displayed in Fig. 2(b), while analyzing
for (cd). From the measurements we constructed
Tr(p ) = —,

' (1+(cr ) +(a. ) ), shown in Fig. 1(b). It fits
well to the theoretical curve of Fig. I in Ref. [5].

Our main interest is in the phenomenon of spontaneous
pola i iza t ion.

(iv) Unpoiarized particles, when exposed sufficiently
iong to a resonant, quantized radiation fteld, will become
highly polarized.

Of course, we cannot simulate this eAect with a beam
of unpolarized neutrons. So we first measured the neu-
tron response for initial neutron spin up, then for initia
neutron spin down, each with its appropriate field distri-
bution [for instance Figs. 2(b) and 2(c)], and added the
signals. In a real experiment with one single quantized
field, on the other hand, each neutron spin state in the un-

polarized beam ~ould automatically only see its appropri-
ate set of fields.

Examples of this spontaneous polarization are is-
played in Figs. 3(a) and 3(b). For times much shorter
than the revival time tp =2rtn '

/g, and for photon num-
ber n)) 1, we find for the coherent field case the spon-
taneous polarizations &cr, & = rr(t/tR)sin(co~t) —and (cr~&

=2m(t/tR)sin (co~t), with co~ =2gn' . In the collapse
region, on the other hand, one has (cr~) = sin(rrt/t~).

The size of the magnetic field 80 only inAuences the
characteristic time tR needed to reach the maximum p-
larization, but not its size which approaches 100% for not
too small n. For zero magnetic field this maximum is
shifted to infinity, as it is in the "classical" limit of large
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FIG. 3. Spontaneous polarization of initially unpolarized
particles in a Glauber coherent field. (a) Rise of (o, ), and (b)
of (oy).
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FIG. 4. Response to a thermal radiation field. (a) Collapse
and no revival of (cr, ); (b) hidden coherence in (a~); (c) spon-
taneous polarization of (n~) for an initially unpolarized beam.

photon numbers.
The photon content of the cavity may change by one

photon upon the passage of a particle. But neither the
short time behavior of the spontaneous polarization nor
its maximum value are, for n))1, very sensitive to the
size of n.

This phenomenon of spontaneous polarization can
again be understood by looking at the classical field dis-
tributions, for instance for (az): Figure 2(c) shows the
pattern needed for the beating of particles initially in the
"down" state. The mean fields 8~(n) remain the same as
for spin up. The difference fields AB

~ (n), however,
change sign, and therefore induce the same sign of (cr~)
for both initial spin directions, i.e., a large (cr~) slowly ap-
pears even for zero initial polarization of the beam.

Interestingly, the same arguments hold for the interac-
tion of particles with radiation having thermal photon
statistics. This can readily be understood from Fig. 2(d):
The difIerence spectrum from a field distribution ex-
ponential in n will produce a similar beating phenomenon
in (cr~) as for the Glauber case [Figs. 4(b) and 4(c)].

(v) The phenomenon of hidden coherence and spon
taneous polarization occur also for particies interacting
with thermal radiation.

This is remarkable because revivals are known to be
completely suppressed in the thermal radiation case; see
Fig. 4(a). This feature may also simplify the experimen-
tal detection of spontaneous polarization.

(vi) As an additional pure quantum fteld effect we ftnd
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an oscillation of (ct„) along the direction of B~

This is an example of a spin moving into a direction
which is forbidden classically.

Could some of the quantum field effects evoked in (i)
to (vi) be measured in a real experiment with a beam of
spin-polarized particles? For an alkali atom in a resona-
tor of volume V one has, in SI units, g =6 Ox 10
x(Bo/V) ' . For Bo=5 T and a microresonator of I

mm volume, g =40 s '. A very cold beam of atoms,
after a time of passage of 250 ps, has gt =10 . The
quality factor of the resonator and of the magnetic field

homogeneity should both be of order coot =2&10, which
is feasible (for a resonator state of the art is g —10'
[Isl).

The spontaneous polarization of (tT, ) in Fig. 3(a) starts
like (gt) and would then give a 10 " effect, for both
coherent or thermal radiation. When n is chosen (for in-

stance via the resonator temperature) such that the fast
component of (a~) reaches its first maximum, see Fig.
3(b), then (o~)—(gt) —10 for the above example,
but would need a tr/2 flip for detection.

Atomic beam PNC experiments often are sensitive to
effects much smaller than this. However, even if some of
them [16] employed gold plated cavities, their quality
factor was too low to allow quantum field effects to devel-

op. Further, typical cavity volumes were larger, and

splittings and flight times smaller than in our example.
For a neutron g=2.0X 10 (Bo/V) ' . In Bo=5 T

and a resonator of I m length, 4 cm diameter, g —10
s '. After a neutron storage time of order of the neutron
lifetime of —10 s, one has gt —10 . With ultracold
neutrons the measurement of small effects is rather stan-
dard [17]. But here the quality factor needed is —10',
which is rather excessive.

To conclude, spontaneous polarization effects may well

be measurable in state of the art atomic beam experi-
ments. The fact that they are induced also by thermal
radiation should facilitate their detection. Existing ex-
periments on atomic PNC violation do not have

su%ciently long coherence times to suffer measurably

from quantum field background effects. Polarized neu-
trons have served us to simulate these effects, but it would
be very di%cult to really measure them with neutrons.
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