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Fractional Quantum Hall Liquid, Wigner Solid Phase Boundary
at Finite Density and Magnetic Field
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At finite magnetic field and fixed filling factor v, as the particle density decreases, the fractional
quantum Hall state will at some point give way to the Wigner solid. We calculate the ground-state
energy of a Laughlin-like variational wave function at finite magnetic field and density by a quantum
Monte Carlo method and compare the results with a calculation of the Wigner solid energy to get
an estimate of the zero temperature finite density phase boundary.

PACS numbers: 73.20.Dx

The fractional quantum Hall eKect is a remarkable
macroscopic quantum phenomenon occurring in a 2D
electron gas at high perpendicular magnetic fields B and
low temperatures T [1]. If the 2D gas is confined in GaAs,
the high mobility samples for a range of fields have an
accurately quantized Hall resistivity determined only by
the fractional filling of the lowest Landau level and a
longitudinal resistivity which decreases exponentially as
T —+ 0.

In this regime, it is generally believed that the 2D elec-
tron gas is best described as a strongly correlated quan-
tum liquid, the so-called Laughlin liquid (LL).

At sufIiciently high fields it is also known that these
same high mobility GaAs systems become resistive, i.e. ,

the longitudinal resistivity begins to increase exponen-
tially as T —+ 0. The value of B at which this occurs in
the best samples is a function of the dimensionless den-
sity as well as the fractional filling of the Landau level. In
this regime many other types of experiments [2—7] sug-
gest that the 2D electron system is, in fact, a pinned
electron solid, the so-called Wigner solid (WS) with no

gap in the excitation spectrum, except perhaps for a gap
which comes about due to pinning by impurities.

For an ideal system consisting of n = 1/aa
carriers/cm2 of mass m* interacting via a Coulomb inter-
action screened by a static dielectric constant e, the phase
boundary between the LL and WS is completely charac-
terized by three dimensionless parameters: the filling fac-
tor v, the dimensionless density r„and the dimensionless
temperature I'. More precisely v = 2E /a = 2E~/h~,
[E = (hc/eB) ~, E~ = 7m/m*, and cu, = eB/m*c],
r, = a/a~ (aIs = eh, /m*e ), and I' = (e /ea)/kIsT.
In the regime where the density is high it is convenient
to think of r, as equivalent to a Landau-level mixing pa-
rameter A = (e /ea)/h~, = 2vr,

All microscopic calculations to date of the phase
boundary between LL and WS have been restricted to
the I' = r, = 0 limit. Some reliable estimates of the

solid energy were made through the use of a quadratic
variational wave function for a set of distinguishable par-
ticles [8] or the use of a perturbation expansion about
the energy for a harmonic solid [9]. This energy was
then compared with the energy of the LL. Since the solid
is almost harmonic it is possible to calculate its energy
by at least two methods at arbitrary density [9, 10]. To
determine the phase boundary between I L and WS it is
also necessary to calculate accurately the energy of the
LL as a function of density.

In this I etter we present the results of a variational
Monte Carlo calculation of the energy of a fractional
quantum Hall liquid at finite r, and at v = 1/3, 1/5,
1/7, and 1/9. We use a variational wave function Q
which is of the Laughlin form at filling factor v, multi-
plied by a Jastrow factor with a single parameter a to
calculate the energy. The Laughlin wave function has the
minimum possible kinetic energy and it does a superb job
of keeping the particles as far from one another as possi-
ble considering the limited basis set. The Jastrow factor
in our new wave function introduces additional correla-
tions which keep the electrons further apart, i.e. , it makes
the LL look more like a solid. The reduction of poten-
tial energy which results, however, is at the expense of
additional kinetic energy, and it remains to show how
much lowering of the total energy we get at any given
density. We do, however, know that at large enough r,
the potential wins out and as we shall see it is possible to
gain a significant amount of energy over the LL energy
at experimental densities.

In the numerical calculation we place a finite number of
particles N on a sphere of radius R (n = N/47rR2). We
assume that a uniform neutralizing background charge
is on the surface of the sphere and that a magnetic
monopole giving 2S magnetic flux quanta which extend
radially through the surface is at the center. If m = 1/v
is an odd integer, then 2S = m(N —1). If we choose a
as the unit of length and e~/2a~e as the unit of energy,
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the Hamiltonian is

N (
(2)

Here the angular momentum operator [ll, 12]

L = R x (p —eA) + SA, (3)

where R = BA is a point on the surface of the sphere
and the vector potential is A = —(S/R) cot 8 @.

Single-particle eigenstates in this gauge are

Ysg~ = Msg~u v P& s ' (uu —vv),S—m S+m S+m, S—m

MS~m = 28+1 (E —S)!(/+ S)!
4~ (E —m)!(l+ m)!

where P„'( (x) is a Jacobi polynomial and u
e '(/ cos(8/2), v = e'&/2sin(8/2) are convenient spinor
coordinates. If we assume that the distance between par-
ticles i and j is the chord distance r,~

= 2R[u, v~ —u~v, [,
then

(5)

After experimenting with several Jastrow factors we
chose a trial wave function of the form

—n
(+'+z +a+') ~+9

I ~i/2)
i&j

The rather smooth Jastrow factor n/ri/~ introd—uces
long-range solidlike correlations and as we shall see gives

0.004-

+
~S ~S

where T is the kinetic energy operator, V is the potential
energy operator, and the last term is the contribution
from the uniform background charge. The operator T
for N particles on the sphere, in these units, is

us a reasonable energy lowering of the liquid as r, in-
creases. Although the form of the 3astrow factor is the
same as Ceperley's [13], the wave function as a whole
does not behave as his because of the difference in pref-
actors. We have obtained variational energies as a func-
tion of r, for v = 1/3, 1/5, 1/7, and 1/9. We use the
Metropolis algorithm to evaluate expectation values of
the kinetic and potential energy operators T and V for
various a in the state g . A polynomial in a is then
Btted to the data from the Monte Carlo code to give
a continuous approximation to T (cr) = (g" [T[@ ) and
V (a) = (Q [V~/ ). The variational energy E (r, ) for a
given r, and v is then found by minimizing E (r„o.) =
(1/ ')T ( ) + (2/ .)V ( ).

A typical result is shown in Fig. 1 for v = 1/3, r, = 10,
and N = 100. The minimum is at o; = 0.47 and the
energy gain AE relative to the Laughlin state is 0.0016.
The Monte Carlo code was run until the statistical error
was less than 0.001/r, for r, ( 100. In order to evaluate
finite-size effects, runs were made at v = 1/3 and 1/5
with 50, 100, and 200 particles. On the sphere, the zero-
point energy zh~, = (2/vr~)(1 —1/N) of the single-
particle states in the lowest Landau level varies somewhat
with particle number. Once this zero-point energy was
subtracted from the total energy, differences in energy
of & 0 001/r, w. ere found between the energies for 50
and 100 particles and no differences within the statistical
error of the Monte Carlo code were found between the
energies for 100 and 200 particles. The results quoted in
Table I are for systems of 100 particles at v = 1/3 and
1/5, and for systems of 50 particles at v = 1/7 and 1/9.

Figure 2 shows the pair correlation functions g(r) we
obtained for the v = 1/3 liquid at various r, . As r,
increases, mixing in higher Landau levels becomes pro-
gressively less costly in energy and more correlations are
introduced. The correlation hole increases in width, the
first peak becomes higher, and at higher r, other peaks
begin to become apparent. At very large r, (r, ) 300),
the pair-correlation function becomes indistinguishable
from the pair-correlation functions for a classical 2D elec-
tron crystal at some finite temperature [14].

In order to determine the value of r, at the I L-WS
transition, we need, as discussed, a rather accurate eval-
uation of the energy of the solid. Esfarjani [15], following

0.002-

-0.002-

-0.004-

-0.006-

TABLE I. Coefficients for an expansion of the trial
wave function liquid energy of the form r, (E —Tun, /2)
ap + a~r, + a2r, + a3r, . The error in fitting is less than
0.001/r, for r, ( 100 at v = 1/3 and 1/5, and for r, ( 20 at
v = 1/7 and 1/9.
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FIG. 1. Change relative to the Laughlin state in kinetic
ATi/3(o. ), potential AVi/3(o, ), and total energy AE$/3(T o.)
at r, = 10, v = 1/3 as a function of the variational parameter
o.. The statistical error is too small to show.
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FIG. 2. Pair-correlation functions computed at v = 1/3
at various r, .
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the method given in [9], began with a harmonic Hamilto-
nian and computed the effect of the leading cubic term in
second-order perturbation theory. For v = 1/3 he found
that the cubic term lowered the energy of the harmonic
solid by —0.206v2/r, per particle, while the fourth-order
term raised it by 0.290v /r, . The size of these energy
shifts is, on the scale of the energy differences involved in
the calculation, very signi6. cant. Higher-order terms are
clearly required, but beyond fourth order the calculation
becomes unmanageable, so as it stands these results are
not useful.

Fortunately, however, a recent variational calculation
of Zhu and Louie [10] which allows for Landau-level mix-
ing gives us a nonperturbative upper bound for the solid
energy. These authors modify the variational wave func-
tion of Lam and Girvin [8] by "squeezing" the Gaussian
part of the wave function at each lattice site, such that;

exp( —4]z, —B,
~ ) ~ exp( —P~z, —R, ] ),

-a r't
and then multiplying by a Jastrow factor e ~/" . Vary-
ing n and P will vary the amount of Landau-level mixing
in the wave function. Figures 3(a) and 3(b) are plots
of the energy of the liquid (dashed line) and solid (solid
lines) (Zhu and Louie) for v = 1/3 (a) and v = 1/5
(b) filling factors. This comparison implies that a phase
transition to the solid will take place around r, = 22 for
v=1/3andat anr, =15 at v=1/5.

In addition to all uncertaint;ies connected with accu-
racy in the calculation for the liquid and solid energy in
the absence of impurities, we must concern ourselves, at
least qualitatively, with the effects of impurities. Even in
the best samples we expect the electrons to couple to a
rather slowly varying random potential produced by the
dopant atoms, typically Si, offset from the interface by
hundreds of angstroms. The electrons can in fact lower
their energy somewhat by changing their local density
to accommodate the local impurity potential. Since the

liquid is incompressible at filling like v = 1/3, to lowest
order in the potential fluctuations, it will not be able to
do this. The solid, on the other hand, is compressible.
For a weak smoothly varying potential, simple arguments
based on an elastic medium description of the WS indi-
cate that the energy gained by the solid is very roughly
[16]

@imp m Ug (8)

where vq ——(0.138e /ma) /2 is the transverse sound ve-
locity in the absence of the magnetic field and ( is the
correlation length for the distorted WS. Depending on
the quality of the sample, we might expect 5a & ( & 50a.
If ( = 50a, the effect on the solid energy will be minimal,
and the solid energy will be given by the upper solid line
in Fig. 3, whereas if ( = 5a, the solid energy will be
shifted to the value shown by the lower solid line. At
v = 1/3 the solid energy crosses the liquid energy at a
relatively large angle, so if we take ( = 5a the transi-
tion point may change by Ar, = 2 or 3, but at v = 1/5,
the slope of the two curves is more nearly equal, and the
transition point may change by Lr, = 10 or more. Of
course, we do not know the coherence length, and Eq. (8)
is only a rough estimate.

In Fig. 4 we have plotted the approximate phase
boundary at zero temperature. The solid line with gaps
in it is a phenomenological one-parameter Lindemann
curve obtained by computing the mean-square relative

rs

I'IG. 3. Liquid and solid energies as a function of r, for
the v = 1/3 and v = 1/5 states. The dashed curves are liquid
energies, and the solid lines are linear interpolations between
the points at r, = 2 and r, = 20 of Zhu and Louie, both with
and without impurities (assuming t" = 5a).
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