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Kinetic Equations for Long-Wavelength Excitations of the Quark-Gluon Plasma
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We show that long-wavelength excitations of the quark-gluon plasma are described by simple kinetic
equations which represent the exact equations of motion at leading order in g. Properties of the so-called
"hard thermal loops, " i.e., the dominant contributions to amplitudes with soft external lines, find a natu-
ral explanation in this approach. In particular, their generating functional appears here as the eAective
action describing long-wavelength excitations of the plasma.

PACS numbers: 12.38.Mh, 11.15.Kc

Significant progress has been achieved recently in un-

derstanding long-wavelength excitations of a quark-gluon
plasma [1-3]. In equilibrium, at high temperature, such
a plasma may be viewed as a gas of weakly interacting,
massless quarks and gluons. When coupled to weak and
slowly varying perturbations, this system may acquire a
collective behavior on a length scale —1/gT, where T is

the temperature and g the coupling constant, assumed to
be small. In this Letter, we present a consistent and
physically intuitive description of such long-wavelength
phenomena, based on a set of coupled mean-field and ki-
netic equations, to which the exact equations of motion
reduce in leading order in g [4,5].

The kinetic equations encompass all the so-called
"hard thermal loops" and clarify the nature of their re-
markable properties, left largely unexplained by their
original derivation in terms of Feynman diagrams [2,6,7].
These hard thermal loops (HTL) are the dominant cor-
rections, at high temperature, to amplitudes involving soft
external lines. (Following the usual terminology, we call
an energy or a momentum "soft" when it is of order gT,
and "hard" when it is of order T; at equilibrium, most
particles are hard. ) As they are of the same order of
magnitude as the corresponding nonvanishing tree level
amplitudes, HTL need to be resummed in higher order
calculations [1,2].

Our equations isolate consistently the dominant terms
in g in the hierarchy of equations which describe the
response of the plasma to weak and slowly varying distur-
bances, i.e., varying on a scale of order 1/gT. In doing so,
we treat bosons and fermions on the same footing and in-
troduce an average fermionic field tlt(X) in parallel with
the average gauge field A„(x). A noteworthy feature of
the present approach is that g, besides measuring the in-
teraction strength, controls the wavelength of the soft
space-time variations and, for consistency, also the
strength of the mean fields. One finds for example that,
in order for the deviations away from equilibrium to stay
small, the gauge field strength tensor should be at most of
order gT; then gA —gT is of the same order as the
derivative of a "slowly varying" quantity, and, when
needed, can be combined with it to form a covariant
derivative [4,5].

The dominant interactions which determine the re-

sponse of the plasma are those which take place between
the hard particles and the soft mean fields. In leading or-
der, we can neglect the direct interaction between the
hard particles, which allows us to truncate the equations
at the level of the two-point functions. The motion of a
given hard particle is only slightly perturbed by its in-
teraction with a soft mean field. However, because the
mean fields vary over distances much larger than the in-
terparticle distance (-1/T), they affect coherently many
hard particles, giving rise to collective "polarization" phe-
nomena. These show up as "induced sources" which add
to the external ones in determining the properties of the
mean fields.

The equations for the quark and gauge average fields
are

i exttt(X) = q(X)+ tl'"d(x),

[Dx,F,p(X) l' gtit(X) y„t'ttt(X—) =j„'(X)+j„'"d'(X) .

(2)

Here g and j„' are external sources, a =1, . . . , N —
1 are

color indices for the adjoint representation of the SU(N)
gauge group, while p, v=0, . . . , d —

1 are space-time in-
dices (d =4 throughout this work). The covariant deriva-
tive is D„—:8„+igt'A„' and F„„=[D„,D,]/(ig). When us-

ing a covariant gauge, one should also consider equations
for ghost mean fields. These are not written here as it
turns out that they are trivial, i.e, , there are no induced
sources for the ghost mean fields [5]. The induced
sources can be considered as functionals of the average
fields themselves. After functional difIerentiation, they
yield the one-particle irreducible amplitudes with soft
external lines. Thus for example the fermion self-energy
is given by Z(x,y) =Stl'" (x)/Stir(y), the gluon polariza-
tion tensor by I1„',(x,y) =Sj„'" '(x)/&1b(y), etc. One
outcome of our work is a set of consistent expressions for
the induced sources, at leading order in g. As we shall
see, these represent generating functionals for all the hard
thermal loops.

I n leading order, the induced sources can be expressed
entirely in terms of two-point functions. For example,
rl'" (x) =gy't, (A;(x) tlt(x))„where the subscript c indi-
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cates a connected expectation value which, in leading
order, involves only the hard particles. The abnormal
quark-gluon propagator which enters g'" is nonvanishing
only in the presence of the fermionic mean field y. It
vanishes in equilibrium, as does the induced color current
j'" . In leading order, it is possible to write this current
as the sum of two terms, j'" =j +j~, where j is the
current induced by a gauge field, while j~ is that induced
by a fermionic mean field. Note, however, that the
eAects of the two kinds of fields are not totally indepen-
dent: j~ depends on 2, as required by gauge covariance.
Furthermore, both components receive contributions from
various species of hard particles and it is convenient to
calculate separately the contributions of fermionic and
bosonic particles. Accordingly, we write j =jf +jb and

j ~=jf+j f The . fermion pieces involve only the hard
quark propagator in the presence of the fields: jf"„+jf„
=gt'(y(x) y„t'y(x)), . In a covariant gauge, the bosonic
pieces involve hard gluons and ghosts [5].

In order to implement the condition that the average
fields are slowly varying, it is convenient to use the
Wigner transform of the two-point functions, such as

(k Dx)$'(k, X) = —i (d —2)Cf[8(k)+h(k)]Ay(X),

(3)

(5)

$(k,x) =—„I d s e'""(P(x —s/2) y(X+s/2)), ,

for the quark propagator. Note that, in contrast to other
authors, we do not insist on defining manifestly gauge co-
variant Wigner functions [8]. Covariance will be
recovered later, when calculating physical quantities.
The induced sources are then integrals over k of Wigner
functions, which we refer to as k-space densities. For ex-
ample,

~ d4kg'"'(X) =g ~ t.y'W;(k, x),(2')4 ' (4)

where 1f,'(k, x) is the Wigner transform of the quark-
gluon propagator K;(x,y)—= (A;(y)y(x)), . Thus $'(k,
X):t'$"—(k,X)—:t'y' R;(k, x. ) is the k-space density for
ri'" (X). The densities for the induced currents are
denoted by Jf b(k, x) and 2fb(k, X). For example, the
fermionic density is Zf'„(k,x) =Try„t'$(k, x), where the
trace refers to both spinor and color indices.

At leading order in the coupling g, the Schwinger-
Dyson equations for two-point functions reduce to the fol-
lowing equations for the densities of the induced sources
(technical details on the derivation of these equations will
be given in [5]):

(6)[k D, Jf„(k,X)] =2gNfk„k~F', ri'/s(k),

[k Dx, JJ„(k,x)]'=igk„[P(X)t'$'(k, x) —
$.F(k,x)t'y(X)j gkJ' 'jy—(X)t $"(k,x) —

. g (k,x)t'y(X)j, (7)

[k Dx, Jg~„(k,x)]'=gkJ' '[P(X)t g'(k, x) —g (k,x)t'y(X)j,
[k D, Jb„(k,x)]'=gN(d —2)k„k~F;O'A(k).

In these equations, $f (k, x) =.$' (k,X)y, Cy= (N
—

I )/2N is the quark Casimir, Nf is the number of quark
lIavors, and f' ' denote the structure constants of SU(N).
Furthermore, h(k) =pp(k)N(kp) —and h(k):pp(k)n(—kp),
where pp(k) =2tre(kp)8(k ) is the spectral function for
free massless particles, and N(k p) and n (kp) denote re-
spectively boson and fermion occupation factors. The
factor d —2 in Eqs. (5) and (9) reflects the fact that only
the transverse gluons eff'ectively contribute to the densi-
ties.

Equations (5)-(9) have a number of interesting prop-
erties: (i) They are independent of the gauge fixing pa-
rameter X which enters calculations in general covariant
gauges [4,5]. (ii) On their right-hand sides, all possible
vacuum contributions cancel. (iii) They transform co-
variantly under a local gauge transformation of the mean
fields 8„, y, and f The densities . Jf, 2b, and .$' involve

Wigner transforms which are gauge covariant in leading
order. The current induced by a gauge field involves k-
space densities, Jf and 2b, which are derived from non-
covariant Wigner functions. However, these densities are
defined up to a total derivative with respect to k which
does not contribute to the integrated current. We have
used this freedom in order to make the densities explicitly
covariant [4,5]. (iv) The symmetry between Eqs. (6) and

(9)

t

(9) rellects the fact that hard quarks and gluons respond
similarly to a soft gauge field. The same symmetry is ap-
parent in Eq. (5) expressing the effect of the fermionic
mean field on the hard particles. (v) The equations con-
tain the covariant line derivative k D~ on their left-hand
sides, and a factor 6(k ) on their right-hand sides. This
reflects the elementary dynamics of the hard particles:
They undergo essentially forward scattering on the mean
fields, and remain on their unperturbed mass shell.

As these remarks strongly suggest, the motion of the
hard particles described by Eqs. (5)-(9) exhibits many
features of classical dynamics. This becomes more trans-
parent if one makes explicit the structure of the various
densities implied by these equations. For instance, Eq.
(6) implies

Jg (k, X) =2k„Nf t '[2z6(k ) ]

x[8(k )Bn+(k, X)+0(—k )bn' ( —k, X)],
(IO)

where 6n ~ =6n ~t' are fluctuations in the quark color
densities induced by the gauge field. These fluctuations
satisfy (with et, =tkt)
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dn(ek)
[i D, 6n (k,X)]'=+ gv E'(X)

dek

In the Abelian case, this equation coincides with the
linearized Vlasov equation. Here, the color electric field
not only modifies the motion of the particle, but also in-

duces a "precession" of the densities in color space. The
other equations may be given similar interpretation.
Thus, Eq. (5) for the quark-gluon Wigner function .$' de-
scribes fluctuations where, under the action of a soft fer-
mionic mean field, quarks are converted into gluons and
vice versa.

The total current induced by a gauge field 2 is j=jf +jb. Its k-space density, J —=Jf +Jp, satisfies

[k D~, J„"(k,X)] =gk„k F(X)

t)t, [2Nfh(k)+lV(d —2)h(k)l . (12)

This equation generalizes the Vlasov equation to non-
Abelian plasmas. Previous attempts to derive such an
equation led to more intricate results. Ho~ever, they
were based on different approximation schemes which
mix leading and nonleading contributions in g and, as
such, are not entirely consistent [8]. One can also com-
bine Eqs. (7) and (8) into a single equation for the total
current density induced by the fermionic fields, J v—=Jg

Y

[k D~, s&(k,X)]

=igk„t lty(X)t $'(k, x) —%.(k,X)t'y(X)] .

This equation is similar to the corresponding one in the
Abelian case [4]. In doing the sum of Eqs. (7) and (8),

t

the typical non-Abelian effects cancel; these are con-

tained for example in the second braces in Eq. (7), and
involve the three-gluon vertex leading to gauge field in-
sertions on the hard gluon lines. This kind of cancellation
was first noted by Taylor and Wong [9] in relation with
the HTL's for amplitudes involving one pair of quarks
and any number of soft gluons (albeit their proof is only
explicit up to three external gluons).

We have thus reduced the set of equations (5)-(9) to
three fundamental equations, namely, Eqs. (5), (12), and
(13) for the densities of the induced sources. From the
gauge-covariant character of these equations, it follows
that, under local gauge transformations, g'" transforms
like y, while j'" transforms like F„,. Provided the exter-
nal sources are chosen so as to satisfy the same property,
the mean-field equations (I) and (2) are then gauge co-
variant, as are the classical equations of motion derived
from the QCD action.

Equations (5), (12), and (13) contain all the informa-
tion on the generalized polarizability of the plasma.
After solving Eq. (5), with retarded boundary conditions,
we compute the fermionic induced source according to
Eq. (4) and obtain

tl'" (X) = —itoti l Y l duU(X, X—vu)y(x —vu)4~

—:gl d vBzg(x, v)y(v), (i 4)

witll top:Cf(g T /8) and i "=—(l,v), v =—k/e&. The angu-
lar integral runs over ail directions of v, and U(x, y) is
the parallel transporter along a straight line joining x and
J [4]. The kernel 8Z~ is the self-energy of a soft fermion
propagating in a background gauge field and it may be
easily obtained from this equation. The current induced
by fermionic mean fields results from Eq. (13):

dA goo +ooj~~(X) =gto()t'J v v„dt„ds y(x —vt ) y'U(x —vt, X)t'U(X, X —vs) ill(x —vs)

d'4vt d4v2p(v, )ar„",(x;v, , v2) ~(v&) .

t

The correction 61 to the quark-gluon vertex may be
easily read out from this equation. Finally, the current and
induced by soft gauge fields is determined from Eq. (12)

(i 5)

(i 8)

j„(X)=3co~J v„g du U(X, X—vu)Foj(X —vu)

xv~U(x —vu X) (i 6)

[D~,j„']=O (i 7)

Here top=(g T /9)(lV+Nf/2) is the plasma frequency.
By successive functional differentiation with respect to 2
of Eq. (16) we derive corrections to the equilibrium am-
plitudes for soft gluon fields. All the amplitudes obtained
in this way, as well as those contained in BZ& and in 6I „,
coincide with the HTL's of the diagrammatic approach.

Equations (14)-(16) imply the following covariant
conservation laws for the induced currents [5]:

By differentiating these equations with respect to the
fields, one obtains relations between HTL referred to as
"QED-like Ward identities" in Refs. [2,7]. By using Eq.
(18), together with the equation of motion for itt, we can
verify that the total current associated to fermionic fields,
gyp„t'@+j~~', is conserved in the absence of external
sources.

By eliminating the induced sources from Eqs. (1),(2),
using their explicit expressions (14)-(16), one obtains
nonlinear equations of motion which generalize the Max-
well equations in a polarizable medium. In particular, for
vanishing external sources, these equations describe the
normal modes of the plasma. Note that in general, as a
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consequence of gauge covariance, quark and gluon modes mix.
These nonlinear equations for the mean fields can be generated by the minimal action principle applied to an eNective

action S,n. =So+S;„d. Here So is the classical QCD action, while S;„d contains the effects of the interactions between
the soft fields and the hard particles of the plasma. It follows that S;„d must satisfy 6S;„d/Sy(X) =g'" (X) and
6S;„d/6'8,"(X)=j„'" '(X). These conditions are satisfied formally, i.e. , on the space of fields for which v D never van-
ishes [5,9], by S;„d=Sf+St„with

and

Sf Coo I gtd X~I d YP(X)(XI . 1»y(Y) (19)

where D is the covariant derivative in the adjoint repre-
sentation (DF„„=[D,F„„]),and the trace acts on color
indices only. This action coincides with the generating
functional for HTL's derived in [9] on the basis of gauge
invariance. Here S,fr has a different, more physical, in-
terpretation: It is the classical action describing long-
wavelength excitations in the hot quark-gluon plasma, at
leading order in the coupling g.
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