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How Fast Can a Quantum State Change with Time?
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Lower and upper bounds are derived for the decay and transitions of quantum states, evolving under a
time-dependent Hamiltonian, in terms of the energy uncertainty of the initial and final state. The
bounds are simultaneously a rigorous version of Fermi's golden rule and of the time-energy uncertainty
relation. They are sharp, refer to short times, and are compared with recent long-time results for time-
independent Hamiltonians. Illustrations for tunneling systems, laser-driven processes, and neutron inter-
ferometry in time-dependent magnetic fields are given.
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With the availability of very short and intense laser
pulses (10 ' s, 10' W/cm ), a naturally arising ques-
tion is how rapidly the state of a quantum system can
change with time, given that we know the initial state and
the Hamiltonian governing the time evolution. Recent
examples for dynamics driven/probed by such laser fields
are the suppression of ionization of atoms in strong laser
fields [I]; wave-function shock waves [2]; observation of
quantum jumps [3]; laser-enhanced/suppressed tunneling
[4]; and the photoisomerization of rhodospin in 200 fs
[5]. The 200 fs for rhodospin, during which a massive
nuclear rearrangement occurs, make the molecule one of
the fastest known quantum switches.

One answer to the question is the time-energy uncer-
tainty relation stating that the time at which the state
differs appreciably from the initial state is of order h, /lt. F
or larger, where AE is the energy uncertainty of the ini-
tial state. The purpose of this paper is to cast this answer
into a form suitable to treat driven systems, i.e. , time-
dependent Hamiltonians. It gives bounds for decay, re-
vival, and transitions of a time-evolving state in terms
of quantities that do not require integration of the
Schrodinger equation. The bounds are remarkable be-
cause the oscillatory nature of time evolution makes such
estimates in general di%cult.

For any observable A and state p (normalized vector in

Hilbert space), the uncertainty A(A, p) is defined by
A(A, w):= [&plA p&

—&PIA+& ]' . The state of the sys-
tern at time t is denoted by y& and obeys the Schrodinger
equation i Ay& =H, y, with Hamiltonian H, at time t and
initial state yo. For a perspective, four time-energy in-

equalities for t-independent Hamiltonians H are recalled.
They are of the form

l«le &1»n(~+h ),

a:= arcsinl &pl yo&I ~

(3a)

(3b)

(4)

h, := h '„min IA(H,„p),h(H„yo)]ds,

for 0 ~ t ~ T+, where T+- is the smallest t ~ 0 for
which the right-hand side of (3a) and (3b) reaches I and
0, respectively. Thus the population of' the target state is

limited by the cumulative energy uncertainty of the tar-

d(H, titp)rt) 6)/ (j=1, . . . , 4),
where the T;~'s are different notions of lifetime of the state
tlto and the )/'s are respective constants (Table I). Other
inequalities exist in terms of chronometric observables
[9], traversal times through potential barriers [10], and
delay times in scattering [6,11]. They all may be viewed
as offspring of the identity

&(H, y ) =hll(I —ly &&v l)i II, (2)
between energy uncertainty and the rate of change of yl
for an arbitrary driven system [12]: If one is large, so is
the other. The norm in (2) measures the component of
jr, orthogonal to y„ i.e. , the rate at which y, leaves the
subspace spanned by itself.

The core result of this paper extends (I) to pointwise
bounds for the probability I&pl tit, &l of finding a drit en

system in an arbitrary state p. It is a rigorous, integrated
form of Fermi's golden rule.

Theorem I.—Let y, obey the Schrodinger equation
with Hamiltonian H, and let p be an arbitrary reference
state ("target" state). Then

TABLE I. Lifetimes rt and constants yt in Eq, (I). The )t are sharp, i.e. , for each j there
exist H and yo with equality in (1).

I inch(A, vt, )/l(d/dt)&vt, IAttt, )I
2 infjr ~ 0: &yo Itt, ) '= I/2]
3 inf[t )0: &vto y, ) =0}

fo l&vtol w, )l 'dt

Meaning of I:j

Time for yi to change appreciably
First half-lifetime of yo
First death time of yo
Average lifetime of yo

tr/4

tr/2

3x g -'/'~

Reference

[7I
17I
I8]
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get or initial state, whichever is smaller; and T~ is the
earliest possible birth-death time of state p. There are
systems for which l(ply, )l is nonstationary and equality
holds in (3a) and (3b) over the entire interval 0~ t
~ T-+.

Proof. —The density operator p, .'=
l itt, &(y, l

satisfies
i hp, = [H„p, ]. By taking the expectation value with
respect to p and using the inequality for the uncertainty
product of two self-adjoint operators, one obtains for

p, .= l(pl itt, )
l

the relation

li I =l«lc v»l =h 'l«l[H, p ]v &I

~ 2h 'W(H, ,p)A(p„p) =2g, (p, —pP) 'i',

where g, .= h 'fp/3. (H„p)ds and p, =p, have been used
in the last step [13]. Standard properties of diA'erential

inequalities [14] imply that p —I
~ p& ~ p+ & (t ~ 0)

where p ~, is the maximal/minimal solution of the
initial-value problem p ~, = +'2g, (p+. ,

—p+. I) ', p+. p

=pp (the problem has a continuum of solutions). It is

easy to verify that p+, =sin [min(6+g„tr/2)] and

p —,=sin [max(6 —g, ,0)]. This proves the weak form of
(3) where h, is replaced by g, . The proof of the strong
form, (3) when /i, &g, , is more involved and will be
presented elsewhere (the proof is easy if the time evolu-
tion operator commutes with the Hamiltonian). Cases of
equality in (3) are given below.

Discussion —(a) If p.=yp, the upper bound is trivial
(T+ =0) and the lower one reduces to

l(ypliir, &l ~ cos h '„,a(H„ittp)ds

showing that the initial state cannot decay too fast and
does not decay at all if it is an eigenstate of H, (in which
case T —=~). Conversely if pJ yp, the lower bound is

trivial (T —=0) and the upper one is l(ply, )l ~ sin(h, ).
It shows that a state orthogonal to the initial state cannot
be populated too fast and recovers the elementary selec-
tion rule that p can be populated only if p and yo are
simultaneously noneigenstates of 0, during some interval
of time. Specifically, the transition is fast only if both
have large energy uncertainty during that interval. The
fast transition at large energy uncertainty is due, in a pic-
ture where yo and p are localized on opposite sides of a
potential barrier, to the admixture of excited states near
the top of the barrier [4(a)]. Another corollary of (3) to
the eAect that y& cannot change too fast is the following.
If y, returns to itrp at time t~ )0 (revival time) after
having decayed to a state orthogonal to yo, then
t

~
~ inf[t ~ 0: fph(H„itrp)ds =trh]
(b) The origin of the interval 0~ t ~ T+ is that the

probability p, may oscillate (quantum beats) and reach 1

or 0 in finite time. So if p, varies monotonically, (3) can-
not hold beyond the point where sin(6~ h, ) reaches 1 or
0. The performance of (3) for the oscillatory case is illus-
trated in Fig. 1. It shows that the bounds (3) are sat-
urated, both with respect to time range and sharpness, for

0. 8-

0.6-

0 4-

0.2-

FIG. l. Graph of l(p/y, )l and of the two bounds from Eqs.
(3a) and (3b) for the t-independent Hamiltonian H
=Eilv'i)(v'il+E~lv~)(v'zl (two-level system with energies Ez
and eigenstates pt, ), initial state pp=(F]+&pp)/J2, and target
state p=(v ~+ J3pq)/2. The bounds are continued as I and 0
beyond T+. . Equality in (3a) and (3b) for 0~ t ~ T~ results,
with this H and yp, for the choices p =(p~ -t pq)/W2 and
a=[pi Ti sgn(E~ —Ez)az]/J2. The case p=yp also yields
equality in (1),ja4.

tunneling states, i.e., for maximally nonclassical states.
(c) For t-independent Hamiltonians H, the result (7)

has been obtained earlier and gives the entries j =2, 3 in
Table I [7]. In this case, (7) may be rewritten as

(yplyi&=p(t):=„e '"'"dp(E),f

lp(t)l ~ cos(Jvarp t/h), (9)

where p is the spectral measure (probability measure) of
H with respect to yo and varp is its variance. Thus the
short-time decay of the Fourier transform p(t) is limited
by the first two moments of p and is slow or fast depend-
ing on whether dp/dE is narrowly peaked or broad. If
the support of p consists of a single point (i.e., iitp is an
eigenstate of H), there is no decay. If the support of p
consists of two points as in the two-level system in Fig. I,
the decay is fastest when the points have equal weight
("broad" dp/dE), giving equality in (9). Equation (9)
may be regarded as a short-time counterpart of the well-
known long-time decay of p(t) which is fast or slow de-
pending on whether dp/dE is smooth (continuous deriva-
tives) or not. The general decay law for t ~, such as
when the support of p is a Cantor set, is

f1
(I/t) g~ l p (t')

l
'»'-c(d»rp t/h) ', (10)

where c is a constant and Dq is the correlation dimension
of p, viewed as a fractal measure [15]. Thus the short/
long-time decay is governed by the coarse/fine-structure
correlations of p. One can estimate the time of on-
set, t*, of the asymptotic behavior (10) as follows. The
bounds (9) and lp(t)l ~ I require that f(x) ~ c s x
for all x ~ Jvarp t*/h where f(x):=x '[mjn[2x, tr]

+sin(min[2x, tr])]/4x. Analysis of this condition, based
on whether c exceeds the maximum f „„off or not, .
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TABLE II. Bounds for the onset I* and prefactor c of the
long-time regime (10). The bounds for c are sharp.

t* ~ x*hl Jvarp

x* =max [x ~ 0f(x ) =c}
x* =max[x ~ Of(x) =c}

1/D2
X =C

D2=0
0&D2& I;c~f
0&D2& l;c)f,
D2 = I

n Q and charge eo, and electric-field amplitude E and fre-
n this case yields

(i 2)

turned on at time t', the neutron must be inside the
solenoid with probability p'. Typically, t' = 10 ps, p'
=

2 „and the state "neutron inside the solenoid" may be
taken as ftto translated by r. Thus a=exp( —ir P/ h)yo.
By hypothesis p and yo are localized in disjoint regions
with constant potential, so that the inequality Jp'
~ sin(h, ) from (3a) reduces to the kinematical bound

A(P, ttto) ~ (2mh/t')arcsin Jp'. (i 4)

It estimates the localization of yo required for the neu-
tron to be well localized in the solenoid at time t'. This
localization leads to a spreading of the wave packet enter-
ing the solenoid and, by semiclassical arguments, to a
fluctuation ht' of entry time t' of the form

At'~ (1/t ) = [(2ht'/m)arcsin Jp'] ' (i 5)

where t is the neutron velocity. Equation (15) gives &t'
~ 10 ps for the present data and shows that the in-
terference experiment is necessarilp macroscopic (so that
ht'« t') By analog. y to A/V cc IV

' for the fluctuation of
particle number JV in statistical mechanics, (15) may be
regarded as a "fluctuation-dissipation theorem" for time.
Here it is the probability that the neutron is at position r
at time t' which "dissipates. "

Examples (c)-(f) give a flavor of the applicability of
Theorem 1: (c) estimates the onset of the power-law de-
cay in systems with Cantor spectra; (d) yields analytic re-
sults for a continuously driven system that has been tract-(i 3)d, (E D, ttt) „ lsin(tos)lds ~ trh/2 (ttt=a, ftto) .

yields the results in Table II. They show that the bound
(9) pushes the onset of the asymptotic regime to the dis-
tant future if D2 & 1 and c drops below the critical value

f „„S.in.ce every probability measure p on R is the spec-
tral measure of some pair (H, ftto), these results for p are
general. It would be of interest to know if they extend to
probability measures on R (d=2, 3, . . . ).

(d) To illustrate (3) I'or a driven system, we take the
hydrogen atom in a laser field [1]. Let ttto be the eigen-
state with quantum numbers n, l, m of the atomic Hamil-
tonian K. Let H, =k —eosin(cot)E Q with electron positio
quency to. No exact solution is known for ttt, . Equation (7) i

1(yol fit )
I
—cos k„,t, leoElaoh '

J Isin(tos) lds, ~

k„ t
'. = (n/2) [[5n +1 —3l(/+ l)][1+(I—4m )/(4l +4l —3)]}'

[16], where ao is Bohr's radius. This does not show

suppression of ionization for large IEI and co because it
describes the probability of y, remaining in the initial
state, rather than in the subspace of all bound states. But
it does show that for fixed n the initial state is particular-
ly stable if l and Iml are large, in agreement with Ref.
[1(a)]. For example, k„„—~ „-f=nv (n+1)/2. The sta-
bility here has the simple interpretation that such a state
has a small uncertainty in electric dipole moment. Equa-
tion (11) proves that the system remains well behaved as
co ~, in which case the time integral equals 2t/tr. For
large co, Eq. (11) exhibits resonances (plateaus) at
t =tr/to, 2tr/tu, . . . due to the zero energy uncertainty when

the field vanishes. Such inflection points have been ob-
served in numerical work [I (b)].

(e) If a state p J ttto experimentally is known to be pop-
ulated with probability p' at time t', then (3) yields infor-
mation about the two states. This is the converse of pre-
dicting transition probabilities from known p and yo. For
example, let p and yo be the two isomers of rhodospin
[5], both eigenstates of the molecular Hamiltonian K; let
D be the electric dipole moment operator for the elec-
trons and nuclei; and assume H, =K —sin(tot)E D for
0 ~ t ~ T and H, =K for t & T where e, E are as above
and T is the pulse duration. Reference [5] reports p' = I

at t'=200 fs with T =35 fs. This implies h, ~ tr/2 by
(3a), leading to

Th us the experiment yields estimates of the dipole-
moment fluctuations of the two states: A fast switch
requires large fluctuations. If in addition t), (E D, ttto)
x fo Isin(cos) lds & trh, the revival-time corollary in (a)
guarantees that no return to ftto occurs (stable switching).

(f) Another example is the scalar Aharonov-Bohm
effect [17] in which a neutron starts as a wave packet ttfo,

is split and recombined by Bragg diffraction (potential
V), phase shifted in a solenoid (potential 8,), and regis-
tered (Fig. 2). Thus H, =P /(2m)+ V+ W, where P, m

are momentum and mass of the neutron. When 8', is
I IG. 2. Neutron interferometry in a pulsed scalar potential

W, (magnetic field interacting with the spin).
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able only numerically so far; (e) treats a pulsed system
and extracts, from the response, novel fluctuations results;
and (f) shows that the "short times" in (3) may be quite
long for macroscopic quantum systems.

Finally, one may ask how slowly a state can change
with time for a given initial energy uncertainty c. The
answer is, arbitrarily slowly.

Theorem 2.—The maximum/minimum survival proba-
bility of the initial state for time t and energy uncertainty
c, expressed in terms of (8) for t-independent Hamiltoni-
ans, equals

sup„g„,. „„=,ls I 1=1,
inf &„, /p(t)/ =cos(min[at/A, tr/2})

(16)
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