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A nonperturbative method for solving difFerential equations and for finding limit cycles is proposed
and is illustrated on the anharmonic oscillator and on the Van der Pol equation. It is shown to give
the amplitude, period, and equation of the limit cycle with a better accuracy than any perturbative
results so far obtained.
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The idea that lies behind perturbation theory is to find
the quantity of interest as a series expansion in a small
parameter [1]. The obvious drawback of this method is
that we are often interested in the large parameter regime
of the theory under study. To remedy this difficulty, sev-
eral ideas have been proposed such as improvement of the
convergence of the series by resummation (Pade approx-
imants for instance) or finding an "artificial" expansion
parameter in order to obtain nonperturbative informa-
tion in the "physical" parameter (1/N expansion in field
theory for instance). I present in this Letter a somewhat
difFerent philosophy that I illustrate in the context of non-
linear oscillators. I deal with one of the important prob-
lems of this physics, namely, to find the limit cycles of
differential equations, i.e. , the periodic trajectories of the
motion [2]. In this Letter, I begin to apply the method
to the determination of anharmonic oscillator trajectories
(x4 and xs potentials) far in the nonperturbative regime;
then I compute the equation of the limit cycle of the Van
der Pol equation [3]. In both cases, I obtain approximate
solutions not based on a series expansion. As is explicitly
shown, the accuracy thus obtained is almost independent
of the value of the parameter used to solve these equa-
tions in the usual perturbative expansion. Moreover, it is
always possible to achieve a far better accuracy than was
obtained previously by perturbation theory. I show this
explicitly in the example of the Van der Pol limit cycle,
though in this case the parameters of the cycle have been
calculated up already to the 163rd order of perturbation
[4]

The most interesting features of this method are its
extreme simplicity and its very good accuracy in a wide
range of parameter values. No mathematical proof is
given here and a complete study of the accuracy of the
method as well as some of its refinements will be given
in a forthcoming publication.

I consider in the following a particular class of di8'er-
ential equations in which I exemplify the method. Let
us call x(t) the solution of the second-order differential
equation,

subject to the initial conditions

x(tp) = xp, x'(tp) = xp. (2)

The principle of the method is to replace Eqs. (1) and
(2) by a linear difFerential equation with an explicit tirne-
dependent right-hand side. In the language of classical
mechanics, this means that we look for an external force
acting on a particle in a harmonic potential that forces
it to follow the trajectory x(t). This force always exists
and is given by

x"(t) + ~2x = E(t),

where u is still a free parameter. Note that E depends on
the particular differential equation we are studying and
also on the initial conditions (2). Equations (1) and (2)
are completely equivalent to (3) and (2). Now the princi-
ple of the method is to make an ansatz F „,for E and to
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and 6x the difference between z and xa„„

x(~) = x .(t)+6z(t).
The equation obeyed by 6z follows from (1):

f(x.„,+ 6x, x'.„,+ 6z', x."„,+ 6x") = 0.

If for any t, x „, is close enough to x so that

then

f( .„,(t), .'„,(t), *."„,(t)) - O(6 ). (8)

In practice, za„, is expanded on a basis of functions, in
our case as a Fourier sum (this is equivalent to choosing
Fans):

N

x „,(t) = ) (xg sin ku)t + yg cos kraft) . (9)
k=1

We now determine our "best" x~„, by imposing the self-
consistent condition that bx is small compared to x „,
and that bx involves only harmonics higher than ¹ This
approximation means that all the contributions to har-
monics less than or equal to N are taken into account
by x „,. This requirement is reminiscent of ordinary per-
turbation theory. Condition (8) now becomes a set of
coupled algebraic equations, one for each Fourier com-
ponent. Therefore, Eq. (8) determines the approximate
solution xa„s(t). Then, to go further, we can use Eq. (8)
to determine bx at first order, i.e. , after having kept only
leading terms in it.

Let us see how this extremely simple approach works
on specific examples. We first consider the anharmonic
oscillator with an x4 potential:

~ox (»)
The origin of time is chosen such that the initial condi-
tions are

search, by a variational-like principle, for the F „, that
best approximates the true F. There lies the advantage
of this formulation: It allows one to make explicit ansatz
and once such an ansatz is given, to integrate trivially
(1). We restrict ourselves in this Letter to periodic tra-
jectories where this approximate scheme appears to be
powerful.

Let us call xa„s(t) the solution of (3) with F „„
z."„,(t) + ~'x.„.(t) = F...(t),

N

x „,(t) = a sinwt + ) x2y+q sin(2k+ l)at,
A:=1

(13)

Note that up to now, no approximation has been made.
We now determine x „, by imposing the self-consistent
condition that bx is small compared to x „, and that it
starts with harmonics higher than 2N + 1. Projecting
out the harmonics greater than 2N + 1 in Eq. (14), we
obtain

(cup —~ )x „,+ gx „,+ F „, 0.2 2 3

This algebraic equation together with (11) leads to the
N+ 1 equations that uniquely determine u, x3) ~ ~ ~ ) x2N+].
We clearly see in this example that this approximation
scheme does not require a small g. It only requires that
~6xj be small with the ansatz (13). As I show now it leads
to a sequence of approximations, the accuracy of which
depends on the ansatz, i.e. , on ¹ We start by taking
N=1.

x „,(t) = a sin mt+ xs sin 3wt, (i6)

where cu = ~(a, g), zs = xs(a, g). Equation (15) implies
that

u)' = u)p2+ -', g (a' —axs+2x', ),
(17)

((u —wp)xs+8m xs+ 4ga —4gxs —zga xs = 0,2 2 2 1 3 3 3 3 2

so that x3 is the solution of a third degree equation. I
give in Table I a list of values of u(a, g) and xs(a, g) and
I compare a with the "true" w, i.e., the one obtained by
numerical integration. Let us now show that Eq. (14)
from which we discard all 6 terms but bx" enables deter-

TABLE I. Period and amplitude of the anharmonic oscil-
lator with 2: potential and uo ——1. The second column refers
to the ansatz 2N + 1 = 3, the third to 2N + 1 = 7, and the
last one to the exact values.

which is consistent with (11). We particularize a since it
is convenient to determine xp from it (see Table I). The
set of x2t, +1 and u are therefore the free parameters. bx
is given by (5) and obeys the equation

6'x" = —~p2 6x —(~p —~ )x,„,—g(x,„,+ 6x) —F,„,.
(14)

2
xans ~ zans + Fans(g& xp)&

and we choose x „,as in (9),

(12)

x(0) = 0; x'(0) = xp. (11)
In ordinary perturbation theory, one looks for the solu-
tion of (10) as a series in g. Here we replace (10) and
(11) by the equation

G= 1
g=1
a= 100
g = 10
a=100
g=100

&max

4.730 04
1.01902

0.022 402
104.68

0.007 084
104.48

&max

4.730 002 6
1.019053 3
0.022 3970

104.705
0.007 082 6

104.705

Tex
ex

+max

4.730 004 2
1.019052 6
0.022 3974

104.709
0.007 082 7

104.71
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mining bx. First, since bx is supposed to be small we can
neglect all (bx)~ and (6x)s terms. On the other hand, the
6'x term reads (uo + 3gxn„,)6x. Since 6x starts with the
fifth harrnonie, b'x 6xs 'sin 5wt, which is also its leading
term, and since u is always at least of the same order of
magnitude as uo and 3ga, then bx" ~ 25 u bx5 sin 5ut is
large compared to 6x that we ean therefore also neglect.
Equation (14) becomes

bx —(~o —~ )x,„,—gx,„,—Il,„,.Il 2 2 3

Let us remark that if xn„, contains harmonics up to (2N+
1)u, b'x" is of order (2N + 3) u 6x2iv+3 sin(2N + 3)(ut
and the approximation is therefore better and better as
N increases. We also remark from (18) that bx is entirely
determined by z „,. In our case, N = 1, we have

bx = bx5 sin 5ut+ bx7sin7wt + bx9 sin 9wt,

with

N

xans = ) [z2&+i sin(2k + 1)ut + yz&+i cos(2k + l)cut],
k=1

3N+1
6'x = ) [ 6x21,+i sin(2k+ l)~t

k=N+1

+6y2A, ,+i cos(2k + 1)~t].

(22)

the dynamics whatever g is [2,3]. This equation has been
extensively studied and the equation of the limit cycle
calculated in perturbation theory up to order g

ss [4].
I now show that the method outlined previously allows
one to determine the period of the limit cycle as well as
its parametric equation in phase space. The method is
the same as for the anharmonic oscillator and I study
only a few numerical examples. A complete study will
be published elsewhere. The functions xa„, and bx are
again expanded as Fourier sums:

6xs =
z z3(z3 a); 6z7 g az3

100u2 196w2

g
324~2

(20)

—g(x,„,—l)z',„,+ (u) —1)x „,—I' „, 0. (23)

Here again, inclusion of even harmonics would not change
the results since anyway they are found to be extremely
small. The projected equation for x„and y„reads in this
case

x" + g(x' —i)z'+ x = O. (21)

This equation is known to have a limit cycle, i.e. , a pe-
riodic trajectory in phase space which is an attractor of

The same calculations can be performed with N
2, 3. . . . In these cases, 6x is a sum of 6zzy+i sin(2k+ 1)tet
with k E [N+1, 3N+1]. By comparing our solution with
the exact solution, it appears clearly that the accuracy
of our results is excellent even for g and a large. It is also
obvious that the approximate solution converges very fast
with N and that the first values of N are enough to ob-
tain accurate results even in the nonperturbative regime
where gxs )) ~ozx at the turning point (which is also the
point of maximum amplitude). In any examples I have
studied the bx2I, +1's are very small when k is large and for
the lowest k, 2k+1 = 2N+3, 6x2iv+s(a, g) determined at
level N by (18) is very close to x2pj'+3(a, g) determined
at level N + 1 by (15). This justifies a posteriori the
approximation leading to Eq. (18).

The same study can be done with the x potential
with almost the same conclusions. This shows in partic-
ular that the accuracy of these results is not specific to
the quartic potential. Note also that all the results thus
obtained are robust to the choice of ansatz: It is pos-
sible to include cosine terms as well as even harmonics
in the ansatz (13) without changing the accuracy since
the order of magnitude of the coeKcients of these terms
are all extremely small (about 10 i~ for the coefficient of
sin 2cut).

Let us now study a somewhat more sophisticated prob-
lem, the determination of the limit cycle of the Van der
Pol equation:

TABLE II. Period and amplitude of the limit cycle of the
Van der Pol equation with g = 1.

2%+1= 17

2%+1= 29

Exact

2 max

2 max

&max

&max

6.6634
2.02

6.663 286 859 322 8
2.008 62

6.663 286 859 323 130 1
2.008 619860 9

6.663 286 859 323 130 1
2.008 619860 87

To determine the limit cycle, we also have to compute the
initial conditions since it is only for these special condi-
tions that the trajectory is periodic. However, expanding
x „, as a Fourier sum already supposes the periodicity.
Therefore, we just have to impose that, for instance, at
t = 0, the particle is at the point of maximum amplitude
with a vanishing velocity. These two conditions together
with (23) are enough to determine the x2~+i, y2A, +i and
u and therefore the parametric equation in phase space
of the limit cycle (x(t), x'(t)) as well as its amplitude
and period. I show in Table II the numerical values of
the period and amplitude obtained with three ansatz for

g = 1 and compare them with those obtained by a highly
accurate numerical integration of the equation. Instead
of giving all the x2k+1) @2k+1, which is not very illuminat-
ing, I show in Fig. 1 the difference between the "true"
x(t) obtained by integration and x „,(t) for 2N+ 1 = 17.
The accuracy is again excellent (more aeeurate by at least
5 orders of magnitude for the amplitude and 10 orders
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FIG. 1. Plot of the difFerence between the x(t) obtained
by numerical integration and z „,(t) on one period for the
ansatz 2N + 1 = 17.

of magnitude for the period than that obtained with the
usual perturbative expansion at order g

63 accompanied
by a Pade resummation [4]) though the ansatz chosen
could seem very crude. This is indeed one of the main
advantages of this method, that simple ansatz lead to
high accuracy results.

To summarize, we can conclude from the results thus
obtained that the method presented here is extremely
simple in its principle, quite easy to use, and gives a
very good numerical accuracy, even with a simple ansatz.
It seems plausible that this method enables one to de-
termine any kind of limit cycle at almost any accuracy.
Though I did not prove it, it seems very probable that
as higher harmonics are included in the ansatz, 2; „,+ bx
converges to the true solution whatever g is. This is a
very interesting property of this method compared to the
usual perturbative expansion where the series are usually
asymptotics and need Pade-Borel resummation to make
sense. The only limitation of the present method prob-
ably appears when the Fourier spectrum is very wide.
I et me, however, mention that in this case no method is
known to determine the limit cycles and that nowadays
symbolic calculus on computers allows one to handle hun-
dreds of harmonics at a time (for the 2N+1 = 29 ansatz,

the whole calculation made on a workstation with Math-
ematica took no more than half an hour). Let me also
emphasize that the present method was used in this Let-
ter to determine periodic solutions of differential equa-
tions but that it can be applied each time a function can
be efFiciently expanded on a basis of functions, i.e. , that
it does not involve too many components. It would ac-
tually be very interesting to investigate the possibility
of using a diferent basis such as wavelets, for instance,
to 6.nd the solutions of differential equations. Let me fi-
nally point out that the starting point of this study was
a reflection about perturbation theory in quantum field
theory and that it would be fascinating if the same type
of philosophy coud also be applied in this domain.

I thank H. Giacomini for discussions and for drawing
my attention to the relevance of the present method for
the determination of limit cycles. I also thank A. Lav-
erne for reading this manuscript and suggesting many im-
provements. LPTHE is a Laboratoire associe of CNRS,
UA280.
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