
VOLUME 70, NUMBER 3 PHYSICAL REVIEW LETTERS 18 JANUARY 1993

Wigner Crystallization in the Fractional Quantum Hall Regime:
A Variational Quantum Monte Carlo Study
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Using a variational quantum Monte Carlo method, we study the two-dimensional Wigner crystal in-

duced by a strong magnetic field in the fractional quantum Hall eff'ect regime. Effects of exchange,
intra-Landau-level correlation, and inter-Landau-level mixing on the total energy and their dependence
on the carrier mass and magnetic field strength are calculated. Our results support that the recently ob-
served reentrant behavior to an insulating phase around v= —, in p-doped GaAs/AlGaAs is a conse-
quence of an increased stability of the Wigner crystal due to the effects of Landau-level mixing.

PACS numbers: 71.45.Nt, 73.40.Kp

Recently there has accumulated a large body of sug-
gestive evidence for the observation of a magnetic-field-
induced Wigner crystal (WC) in the fractional quantum
Hall effect (FQHE) regime [1-5]. However, definitive
evidence for the existence of this long-sought-after elec-
tron solid is still lacking [2,4]. Almost all of these experi-
ments are done with n-doped samples, in which carriers
have a small mass of m* —0.07m, [2-4]. With details
varying, it appears clear from these experiments that
there is a reentrant insulating-FQHE-insulating behavior
around v, =

5 in these two-dimensional electron systems
[2,4]. The only exception is one experiment performed on
a low-disorder 2D hole system at the GaAs/AIGaAs in-
terface [5]. At about the same carrier density, a reen-
trant behavior [5] very similar to that in the 2D electron
systems is observed, but now around v, =

3 . This change
in v, was speculated by the authors [5] to be due to the
effects of Landau-level (LL) mixing, being much larger
in the hole system.

Theoretical estimates of the critical filling factor v, for
the liquid-solid transition can be obtained by comparing
the energies of the FQHE liquid and the WC solid. It
would be a stringent consistency check of the interpreta-
tions of the above interesting experiments [2-5] if an en-
ergetic calculation could show the changes in v, in these
different samples as they are observed experimentally.
The aim of the present work is to calculate accurately the
energy of the WC in various experimentally relevant
situations using a variational quantum Monte Carlo
(VQMC) method. In doing so, we also obtain a quantita-
tive understanding of the roles played by exchange,
intra-Landau-level correlation, and inter-Landau-level
mixing in a WC. Special attention is paid to the inter-
play between these effects and the experimental parame-
ters: the carrier density, carrier mass, and the strength of
the magnetic field. From our calculations, we find that
the effects of Landau-level mixing are indeed large
enough to account for the observed difference in v, be-
tween the electron and the hole GaAs/A1GaAs systems

2D electron/hole systems in a strong perpendicular 8
field exhibit a rich variety of phenomena [7]. By varying
the carrier density, the carrier effective mass, and the
field strength, a very intricate phase diagram is expected.
Exchange-correlation effects in these systems are funda-
mentally affected by the presence of the magnetic field.
For example, at fractional filling factors, particles can,
and prefer to, correlate with each other to lower the in-
teraction energy at no cost to the kinetic energy. There
have been many studies on 8-field-induced Wigner crys-
tals in 2D [7-11]. Most of these were carried out within
the Hartree-Fock approximation. With few exceptions
[11],only the lowest Landau level is considered.

We now describe in some detail our VQMC calcula-
tions. In atomic units the exact Hamiltonian is given by

[p;+A(r;)]
1

i 2m 2' &i I'ij

Here A is the vector potential, m* is the effective mass of
the carrier, and e is the dielectric constant. In the sym-
metric gauge, A=( yB/2, xB/2) with—B in the +z
direction. We use a finite simulation cell with modified
periodic boundary conditions [12]. Because of the
aperiodic vector potential A in the Hamiltonian, only ra-
tional fields can be studied with the modified periodic
boundary conditions. As a result, only the rational
Landau-level filling factors are accessible in our calcula-
tions. In practice this poses no real restriction since the
FQHE states, which we wish to compare our WC ener-
gies to, can only exist at some of the rational filling fac-
tors [7,10]. Calculations are carried out for a simulation
cell with 100 spin-aligned electrons. Only the hexagonal
lattice is considered. Calculations with different sized
simulation cells show that the resulting finite-size effects
are smaller than the statistical noise in our results.

The variational quantum Monte Carlo method has
proven to be an accurate method in studying various con-
densed matter systems [13]. The present work is, to our
knowledge, the first application of this method in con-
junction with the periodic boundary condition in the
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FQHE context. Various trial wave functions are con-
structed and examined to study the effects of exchange,
intra-Landau-level correlation, and Landau-level mixing.
The wave functions all employ one-particle orbitals of the
following form which corresponds to Gaussians localized
on the hexagonal lattice sites (RJ"., RJ~) within the simula-
tion cell Lz x Ly..

R 2

y, (r) = " +exp —,(r —R, —T)'
Q2n la T 4lpf

+ [rxR~+rx T+R~x T], ~.
2lg

(2)
Here T's are given by n„L„+ny Ly with arbitrary integers
n„and n~ lg.=dhc/eB is the magnetic length. p is a
variational parameter to be optimized. For p= 1, p(r) is
solely composed of lowest Landau-level orbitals.

To make contact with earlier calculations and to estab-
lish the validity of the present variational Monte Carlo
method, we first briefly summarize the results for the
"Hartree, " exchange-only, and correlation-only trial
wave functions within the lowest Landau-level approxi-
mation. Our Hartree results are obtained for a trial wave
function that is simply a product of the one-particle orbit-
als in Eq. (2) with p= 1. They can be evaluated exactly
by the Ewald summation technique. In the exchange-
only calculation with no Landau-level mixing, a trial
wave function in the form of a Slater determinant, com-
posed of the same one-particle orbitals as in the Hartree
case, is used. The lowest Landau-level-correlated wave
function [9] is for distinguishable particles correlated by
the magnetophonons. Our derivation [14] for the magne-
tophonon wave function is slightly different from Lam
and Girvin's original work [9]. The final form of the
correlated wave function y„, in the large B-field limit is,
however, the same:

(3)

Here p s are the single-particle orbitals in Eq. (2). g; is
the deviation of the ith electron from its lattice site R; in
complex coordinates. The 8;z's give rise to the correla-

tion effects. Its Fourier transform 8(k) can be written as

;s, coL (k) —AT(k)8 k =e'
cot, (k) + coT (k)

where

(~ —8)/2
[(A —8) /4+C ]'l

(4)

C
[(A —8)'/4+C ] 'l'

Here 8 and B are the diagonal elements of the dynamical
matrix at k for the hexagonal WC lattice with no mag-
netic field. C is the oN'-diagonal element. The coT and coL

are, respectively, the transverse and longitudinal phonon
frequencies.

The energies from the Hartree, exchange-only, and
correlation-only calculations, all of which are within the
lowest Landau-level approximation, are given in Table I.
The comparison of Hartree and exchange-only results
gives the size of "bare" exchange energy. In principle,
one can antisymmetrize the wave function of Eq. (3) and
obtain an estimate of the exchange energy that is
"screened" by the magnetophonon correlations. In prac-
tice it is difficult to carry out such a scheme with the vari-
ational Monte Carlo method because the wave function
resulting from this explicit antisymmetrization is no
longer in the Jastrow-Slater form. However, the upper
bound for the exchange energy, set by the bare exchange
interaction, is already very small for v~ 3 . The energy
gain from antisymmetrizing Eq. (3) will be even smaller.
Landau-level mixing decreases the exchange overlap still
further. We shall come back to this point later.

Previous Hartree-Fock calculations [81 are mostly done
for a charge-density-wave (CDW) state that is in princi-
ple not necessarily the same as our explicit WC state.
But as we see from Table I, the resultant energies are vir-
tually identical. Our energies for the correlation-only
calculation are the same as those obtained by Lam and
Girvin [9] using a special k-point sampling method. Tak-
ing the fractional quantum Hall liquid energies from Ref.
[10] that were obtained using the Laughlin wave function
which is also within the lowest Landau-level approxima-
tion, the crossover from the liquid to solid is v, —1/6. 5, as

TABLE I. Energies (in eft'ective atomic units) of the hexagonal %'igner crystal from various
lowest LL only calculations at r, =1.784. A constant kinetic energy 2 @co& is subtracted. All
energies at other r, 's may be obtained by simply scaling by 1/r, .

Hartree
Exchange only

Present Ref. [7]
Correlation only

Present Ref. [8]
Laughlin
Ref. [9]

—0.4?33
—0.5294
—0.5561
—0,5706
—0.5859

—0.4972 (3)
—0.5338(8)
—0.5567(5)
—o.s7o7(1)
-o.sgs8(1)

—0.4976
—0.5334
—0.5557
—O.S706
—0.5852

—0.4929(13)
—0.5419(9)
—0.5650(3)
—0.5779(3)
—0.5910(1)

—0.4928
—0.5422
—0.5643
—0.577S
—0.5901

—0.5631

—0.5807
—0.5893
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found by Lam and Girvin [9l.
Motivated by the recent experiment on 2D hole sys-

tems [5], we now concentrate on the effects of Landau-
level mixing. There are two independent variables in con-
sidering the energetics: the filling factor v (determined

by the carrier density and the magnetic field) and the
electron gas parameter r, (determined by the density and
the effective mass). The two relevant energies are the
inter-Landau-level spacing Axon and the Coulomb in-
teraction E, =e /ed where nd =1/n Th. ey are related as
follows:

(6)E,/hood = vr, /2.
The ratio is related to the amount of Landau-level mix-
ing. The r, in the above equation is measured in the
effective atomic units. It takes the value of r, —2 for typ-
ical 2D electron systems. But for the 2D hole system in-
vestigated it is r, —25, if one assumes an eA'ective mass
m* —0.6m, [15]. If m* —0.3m„r, would be —13 [5].
Our calculations are carried out for r, =2 and 20. Calcu-
lations ignoring Landau-level mixing may be regarded as
for the extreme case of r, =0, corresponding to the high
density, small mass limit. It is not surprising that this
ceases to be a good approximation for the case of 2D hole
systems where vr, approaches 10.

To mix in higher Landau levels into the ground-state
wave function is to lower the interaction energy at the
cost of kinetic energy. The rigorous lower bound of the
interaction energy is given by that of point-charge parti-
cles sitting at the lattice sites, i.e., the classical Ewald en-
ergy. In the presence of strong Coulomb repulsion be-
tween neighboring electrons, it is energetically favorable
to have (1) a charge-density distribution more localized
at the lattice sites than that given by the lowest Landau-
level orbitals, and (2) a nonanalytic correlation term in
the Jastrow factor which optimizes the dynamical short-
range avoidance between electrons. Based on these physi-
cal considerations, we have allowed P in Eq. (2) to vary
and have introduced an additional correlation factor be-
tween particles r; and rj [14,16] to the exponent of the
correlation part of the wave function in Eq. (3): u(r
=~r; —rj ~) =(A/ Jr )[1 —exp( —dr/F —r/2F)l. (A and
F are variational parameters. ) We evaluated the conse-
quent kinetic energy and interaction energy until an op-
timal energy is reached.

Significant lowering in energy due to Landau-level
mixing is obtained with just the wave function form given
by Eq. (3) with the one-particle orbital Gaussians scaled
by p. We have varied both the Gaussian size and the
overall coe%cient of the magnetophonon correlation term
in the 3astrow factor in Eq. (3). The latter is found to
have little effect on the energy [14]. In Fig. 1, we show
the total energy as a function of p for r, =20 and 2 at
v 3 We find an increase in density at the lattice sites
by Bp(0)/p(0) =70% and a lowering in energy by
bE/(E —

2 I'troc) = 4 4% at —r, =. 20. They are, respec-
tively, 10% and 0.8% at r =2.
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FIG. l. (a) E'""—
2 Acmic (per electron) vs P for v= —,

' at
r, =20. (b) Same as (a) for r, =2. Energies are in the effective
atomic unit. Statistical noise is given by the size of the data
points.

To appreciate the importance of the 4% lowering in en-
ergy, we note that the interaction energy of the lowest
Landau-level Lam-Girvin wave function is only 12%
higher than the absolute minimum given by the Ewald
energy. At r, =20, this diff'erence is reduced by 3 from
allowing the Landau levels to mix. In comparison, the
bare exchange at v= 3, i.e., the diA'erence between the
Hartree and exchange-only results, is only 0.8%. Fur-
ther, at r, =20, a 30% reduction in the extent of the one-
particle orbitals from Landau-level mixing and the
screening movements due to the magnetophonon correla-
tion factor render the final exchange energy negligible
compared to the correlation and Landau-level mixing
eAects.

Additional lowering in energy is achieved with the
Landau-level mixing Jastrow factor. Our final results are
obtained with both Landau-level mixing mechanisms in-
cluded. Calculations are carried out at v= 2 3 5 and

for r, =2 and 20. Results for r, =20 are plotted in

Fig. 2, where we show the energy for the case of
exchange-only with no Landau-level mixing, the case of
correlated wave function with no Landau-level mixing,
and finally the case of the correlated wave function with
Landau-level mixing. The energy of the incompressible
FQHE liquid [10] based on Laughlin's variational wave
function is also shown for filling factors 3 5 and 7

The line passing through the three liquid points is a spline
fit to the data. It does not show the cusps that must
occur at filling factors where the FQHE states exist. Also
shown in Fig. 2 are the energies of the FQHE states at

3 5 and 7 with Landau-level mixing, according to the
recent calculations by Price, Platzman, and He [16]. The
details of the phase diagram will be aAected by tempera-
ture and disorder, both of which favor the Wigner crystal
phase.

At r, =20, our calculated energy curve for the WC
phase lies entirely below the Laughlin wave function en-
ergies for v ~

3 . We note that, as seen in Fig. 2,
Landau-level mixing eAects are in fact larger than those
of intralevel exchange-correlation effects in this case [5].
We expect that Landau-level mixing eA'ects will be small-
er in the liquid phase. In the solid phase, both Hartree
and correlation energies can be lowered by allowing
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insulating-FQHE-insulating behavior has been observed.
Taking the calculations and the experiments together,
there are now good reasons to believe that the insulating
phases around the FQHE states at v, are Wigner crystals
pinned by impurity potential.
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Filling Factor v

FIG. 2. E'""—
2 @cog of the WC at r, =20 compared with

those of the FQHE liquid. Energies are in the effective atomic
unit. (6)—WC with exchange only and no Landau-level mix-

ing. (H)—WC with correlation but no Landau-level mix-

ing. (a)—Correlated WC with Landau-level mixing. (0)—Laughlin state with no Landau-level mixing from Ref. [10].
(x )—Laughlin state with Landau-level mixing from Ref. [16].

Landau-level mixing. From our calculations, the former
appears to be the main mechanism for lowering the ener-

gy. But this mechanism is entirely lost in the liquid phase
where any lowering in the interaction energy must come
from making the pair-correlation function more repulsive:
Being a uniform state the liquid Hartree energy will not
be altered by Landau-level mixing. The work of Price,
Platzman, and He [16] on the effects of Landau-level
mixing in the FQHE state shows that the lowering in the
liquid energy is indeed substantially smaller than that in

the solid: for r, =20 at v= 3, lowering in energy from
Landau-level mixing for the FQHE liquid state is only 4

of that which we find for the WC solid (see Fig. 2). As a
result, for r, =20, the FQHE state is only slightly more
stable than the WC state at v= 3 for a pure system with

no disorder. The WC becomes lower in energy at v=
5 .

For r, =2, however, the WC state is higher in energy at
v =

5 but remains lower in energy at v =
7 than the

FQHE state.
In summary, we have carried out the first variational

quantum Monte Carlo calculations for the B-field-
induced Wigner crystal phase in 2D. We take into ac-
count both the short-range and long-range correlation
eAects in the WC and provide a rigorous variational
upper bound for the WC energy. Landau-level mixing
eAects are shown to be significant in the range of carrier
density, eA'ective mass, and strength of the magnetic field
of experimental interest. Our results show that these
eAects are most likely to be responsible for the change
from a 2D electron system to a 2D hole system in the
critical filling factor v„around which a reentrant
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