
VOLUME 70, NUMBER 21 PH YSICAL REVIEW LETTERS 24 MAY 1993

ys eresis and Hierarchies: D namics o
F'

namics o isorder-Driven
irst-Order Phase Transform t

2)

We use te the zero-temperature random-fie
order hase tp e ransitions. Sweeping the exte l

ran om- eld Ising model to stud y hysteretic behavior at first-

return-
e ex erna eld throu h zero

~ ~

g
ava anc e fluctuations. There is

eresis, e

~&correspon 'ing to an infini
era w ic

lb li ' ttli' t
' M

is cri ical point using mean-field th oy, op

James P. Sethna, Karin Dahmen, Sivan Kartha
Laborat or

en, ivan artha, James A. Krumhansl ~ ~ Br
m ofAo dSoldS«Ph , 'Co ll

eceived 16 October 199
02'

PACS numbers: 75.60.Ej, 64.60.Ht, 64.60.My 81.30.Kf

3.0

2.0

H /J
Q)

O

0.0
Gj
E

H /J

20

-3.0 I

-1.0 0.0 0.5
Magnetization (M)

FIG. 1. HHysteresis loop showin retur-
Shown is th

'ng re urn-point memory.
unction of external fieldis e magnetization as a f

or a system with disorder R = 3.5J, Note th
tern returns to th ' '

l at ex
that it left t

e origina curve at exat exactly the same state B
a i e t, that the returning curve has an a

discontinuity at B d h, an t at both efI'ects also ha
internal subloop. Th

so appen for the

parent states (

us a state can have a wa whole hierarchy of
s a es mothers at increasing fields ang

e s~, w ic are seen as kinks in th
branch of th H~~M~ curve.

he corresponding

1.0-0.5

First-order phase transitions have always b tays een t' e
s a is ica mechan-g o critical phenomena in t t' t' 1

ics. In contrast to the universal 't' 1sa cri ica fluctuations seen
in second-order transitions the id 1' din s

' '
e i ea ized thermodynamic

first-
equi i rium properties of a homogeneous m t '

1

st-order transition abruptl shift fr
ma eria at a

y s i rom (say) liquid to
as, wi precursor fluctuations almost entirel a

e or a first-order transition [1] is the
Ising model in an external field H at T ( T:
passes throu h zroug zero, the equilibrium ma"n t' t'
verses abruptly.

gne iza ion re-

There is an ama '
amazing contrast, though, with real first-

order transitions as studied b
meta urgists Fi . 1 . A

ie by materials scientists and

( 'g. ). solid material which transforms
from one crystalline or magnetic form t th

e inHuence of temperature
rm o anot er under

field often h
p re, external stress, or applied

e often has no sharp transition at all. Hysteresis be-

ssJ,,s,s, —) (f,s, + Hs, ) (1)
'v

allows us to study the effect of d' d
phase trans' '

ec o isor er in a first-order

p ase transition. We study this random-field Is'
at zero tern

om- e sing model
emperature. As the external field H is chan ed

each spin will Hip when the d'

field
e irection of its total local

(2)F, —:) J,~s~+ f, +H
3

changes. The s stemy transforms from negative to osi-
tive magnetization as the field is

ive o posi-
e is swept upwards. Related

approaches [4,5] have been useful f t d
'

hor s u ying hysteresis
and the Barkhausen effect but th hu ey ave not discussed
the return-point memory and did
disorder and field to reach a 't'

an i not attempt to var they e
o reac a critica point. The model

with "invasion" d n
to stud Hui

ynamics has been extensivel d

y uid permeation of porous media [6; we wi
n

'
y use

Th pproach to thermal equilibriume dynamics of the a roa
in t is model has been well studied 7. How
we stud the ath

ie ] '. owever, here

nal field whe
y e a ermal dynamical response to an exter-
, w ere the transition comprises a s

' s. is mo el is applicable to many experimental
omains ave arriers to

ipping arge enough that thermal t' t'a ac ivation can be i-
nored. For example, martensiti tsi ic ransitions come in two
varieties, called isothermal and athermal: Th herma: e athermal

and ext
r ensites show no transformat' 'fa ion i t e temperature

a cracklin noise as
an external strain are held constant but trn, u ransform with

larl mos
a crac in noise as ese parameters are chan d S'

y, t useful magnetic memory d
nge . imi-

ory evices y esign do
not come to thermal equilibrium.

Simulating the system described in Eq. 1 at zero
e yie s ehavior pleasantly familiar to the

comes the key phenomenon. Also there ar
ar ausen [2] and return-point memor [3] ef-

fects, which are ex lained hp
'

e ere in terms of avalanches and
ry e-

a hierarchy of metastable states.
The ingredient we will add to the 'do e i ealized physics pic-

ure is isorder. Adding a random field
the Ising model

e, at each site of

l 993 The American Physical So
' 3347



VOLUME 70, NUMBER 21 PH YSICAL REVIEW LETTERS 24 MAv 1993

experimentalist. Figure 1 shows the hysteresis loop for
a three-dimensional 30 system with nearest-neighbor
bond strength J = 1 and random fields f, with a Gaus-
sian probability distribution with a half-width R. The
outer loop shows the external field H being swept from
a large negative value (saturating all spins to —1) to a
large positive value and back.

The inner loops in Fig. 1 illustrate the return-point
memory egect, seen in some but by no means all first-
order transitions [3]. (Some first-order transitions ex-
hibit a drift in their hysteretic behavior [5].) If the field
H is made to backtrack from H~ to H~, when it returns
to H~ the system returns precisely to the same state
from which it left the outer loop; it remembers the former
state. The slope of the M(H) curve has a nonanalyticity
as it rejoins the outer loop: When the field H(t) passes
through the previous local maximum H~, new spins be-
gin to flip, leading to the apparent slope discontinuity at
point B. This same memory effect extends to subcycles
within cycles (and so on); the state of the system can re
member an entire hierarchy of turning points in its past
external field H (t) .

This memory effect is vividly illustrated by experi-
rnents measuring the avalanche fluctuations during the
transformation. The nucleation of the individual do-
rnains in martensites can produce observable pulses in
acoustic emission and latent heat [8]. Under a cycle like
that between H~ and H~ in Fig. 1, the acoustic emis-
sion is resolved into hundreds of individual pulses each
lasting some p,sec, of varying height, forming a "finger-
print" of the cycle. On repeating the cycle, the avalanche
structure is precisely reproduced.

We can explain the return-point memory effect theo-
retically using Middleton's "no passing" rule, introduced
in the study of sliding charge-density waves [9]. Con-
sider the natural partial ordering of the states: A state
s=(si, . . . , siv) & r = (ri, . . . , re) if s, & r, for each
site i in the system. This ordering is not very discrimi-
nating: Most arbitrary pairs of states will not have any
definite relationship. For example, in Fig. 1, the states a
and b are unrelated: Despite the fact that the net rnag-
netization of a is smaller than that of b, there is likely
at least one spin that has flipped on the way from a to
B which has not flipped back down on the way down to
b. This partial ordering becomes important because it is
preserved by the dynamics:

No passing. —(Middleton) Let a system s(t) be evolved
under the field H, (t), and similarly r(t) evolved under
H„(t). Suppose the initial configurations satisfy s(0) )
r(0) and the fields H, (t) & H„(t). Then it will remain
true that s(t) ) r(t) at all times t

Proof. Suppose the con—trary. Then there must be
some first time that a spin j in r is going to "pass" the
corresponding spin in s, i.e. , r~(t) ) s~(t). At that time,
the local field F" must be larger than F'. But this can-
not be, because the neighbors of r~ in state r at that time
are no less negative than those of s~ and the external field
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H„& H, .
Having established the no passing property of the sys-

tem, we make the additional assumption that the system
dynamics is adiabatic: The field changes slowly enough
that if we start in some state A any monotonic path from
field H~ to H~ will cause the state to evolve in the same
way, and into the same final state B.For this model and
for other systems with the three properties (partial or-
dering, no passing, and adiabaticity), we can now prove
the following:

Return-point memory. —Suppose a system s(0) is
evolved under field H(t), where H(0) & H(t) & H(T) for
0 ( t & T, with H(t) not necessarily monotonic. Then
the final state of the system depends only on H(T), and
is independent of the time T or the history H(t). In
particular, a system coming back to a previous extremal
field will return to exactly the same state, provided that
the field remains within these bounds.

Proof.—Consider the fields H~;„(t) = mini &qH(t')
and H „(t) = max' &qH(t'). These fields irregularly but
monotonically rise from H(0) to H(T). If s;„evolves
under H;„and similarly s evolves under H, then
since H;„(t) & H(t) & H~~„(t) the no passing rule im-
plies s;„(t) & s(t) & s ~„(t). But by the adiabaticity
assumption, all monotonic paths lead to the same final
state s;„(T)= s „(T),so s(T) is independent of path.

Historically, ours is not the first model to exhibit hys-
teresis and return-point memory. These phenomena are
often described by Preisach models [10], where the sys-
tem is decomposed into independent elementary hystere-
sis domains, each with an upper and lower critical field
for flipping. Preisach models have the three above prop-
erties needed for return-point memory, and indeed can
be thought of as zero-dimensional variants of our model.
They are attractive because they demonstrate return-
point memory, and because the distribution of domains
can be varied in order to fit experimental hysteresis loops.
As an illustration of the collective behavior missing in the
independent domain Preisach model, we unearth critical
fluctuations and universality buried in the dynamics of
the interacting system.

Physically, if the nearest-neighbor coupling is substan-
tial compared to the randomness, i.e. , bond strength
J )& B, then the system will look like what one expects of
a clean first-order transition: The first sufficiently large
region to nucleate will push most of the rest of the sample
over the brink. In this small disorder regime, there will
be an "infinite avalanche": Some spin flips, triggering its
neighbors to flip (and so on) until a finite fraction of the
sample is transformed, causing a jump in the magneti-
zation density. This infinite avalanche will perhaps be
surrounded by small events. On the other hand, in the
large disorder regime, where J (( B the spins will essen-
tially flip on their own, each spin flipping as the exter-
nal field crosses its local random field. Those avalanches
which occur will be small: There will be no diverging
correlation lengths.
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M(H) = 1 —2 v(f)df,

where p(f) is the probability distribution for the random
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FIG. 2. Varying the disorder. Three H(M) curves for dif-
ferent levels of disorder, for a 60 system. Our current esti-
mate of the critical disorder is R, = 2.23J (we set J = 1).
At R = 2 & R„ there is an infinite avalanche which seems to
appear abruptly. For R = 2,6 ) R, the dynamics is macro-
scopically smooth, although of course microscopically it is a
sequence of sizable avalanches. At R = 2.3, near the criti-
cal level of disorder, extremely large events become common.
Inset: Log-log plot of the avalanche size distribution D(s) vs
avalanche size s, integrated over one sweep of the magnetic
field from —oo to +oo, averaged over five systems of size 120
at R = 2.3, R = 2.7, R = 4.0. Notice the power-law region
D(s) s + S and the cutoff at s „(R—R,)

Consider the "phase diagram" of our model as we vary
disorder R and field H (at T = 0), starting from the state
with all spins down (Fig. 2). There must be a strength
of disorder A, above which an infinite avalanche never
happens. In contrast, for weaker disorder, there will be a
field H,"(R) at which (on raising the field from the down
state) an infinite avalanche occurs. Both experimentally
[11]and in our initial simulations in three dimensions, the
transitions at H, (R) seems to be abrupt [12] for R ( R, .
(We would call it first order, except the avalanche is
supposed to be mediating a first-order transition —the
language is failing us. ) On the other hand, as one ap-
proaches the critical field H, (R,) at the critical disor-
der B„ the transition appears to be continuous: The
magnetization M(H) has a power-law singularity, and
there are avalanches of all sizes. As one approaches this
"end point" at (R„H,"(R~)) in the (R, H) plane, we find
diverging correlation lengths and presumably universal
critical behavior.

We can solve for these critical properties exactly within
mean-field theory. Suppose every spin in Eq. (1) is cou-
pled to all N other spins with coupling J/N. The ef-
fective field acting on a site is JM + f, + H, where
M = P, s, /N is the average magnetization. Spins with
f, & —JM —H will point down, the rest will point up.
Thus the magnetization M(H) is given implicitly by the
expression —ZM(H) —0

Beld. This equation has a single-valued solution unless
R & R, [which in the case of a Gaussian distribution cor-
responds to p(0) & 1/2J], at which point hysteresis and
an infinite avalanche begin. Near the end point, the jump
in the magnetization LM due to the avalanche scales as
r~, where r—:(R, —R)/R, and P = 2. As one varies
both r and the reduced field h—:H —H,"(R,), the mag-
netization scales as M(h, r) ~r~t M+(h/

~

r ~i ), where
+ refers to the sign of r. In mean-Beld theory 6 = 3 and
M~ is given by the smallest real root g~(y) of the cubic
equation gs ~ (12/vr)g —(12ij2/7r t R,)y = 0.

Unfortunately, the mean-field theory predicts unphys-
ical behavior in two ways. First, there is no hysteresis
apart from the infinite avalanche. This is an artifact of
the Ising mean-field theory, and is not observed in fi-
nite dimensions nor in an otherwise equivalent soft-spin
mean-field model. Second, the approach to the infinite
avalanche upon varying 8 for B & B, is continuous
in mean-field theory. However, in three dimensions we
numerically observe a discontinuous transition, although
IIIuctuation effects do seem to be large.

More interesting is the avalanche size distribution near
the critical point (inset, Fig. 2). We can solve exactly for
the probability D(s, t) of having an avalanche of size s,
where t = 2Jp( JM —H—) —1 measures the distance to
the infinite avalanche at p = 1/2 J. To have an avalanche
of size s triggered by a spin with random field f, you
must have precisely 8 —1 spins with random fields in
the range (f, f + 2Js/N). The probability for this to
happen is given by the Poisson distribution. In addition,
they must be arranged so that the Brst spin triggers the
rest. This occurs with probability precisely 1/s, which
we can see by putting periodic boundary conditions on
the interval (f, f + 2Js/N) and noting that there would
be exactly one spin of the 8 which will trigger the rest
as a single avalanche. This leads to the avalanche size
distribution

s —2

(~ + 1)s—1 —s(t+il (4)
(s —I)!

To put this in a scaling form, we must first express t as
a function of r and h: t r[1 ~ 4vrg~(h/~r~ ~ ) ]. Using
some simple expansions and Stirling's formula, we can
then write D in the scaling form

D(s, r, h) s 'D~(s/kiri 'i, h/iri~s), (5)

where our mean-field calculation gives r = ~, rr =
z [13],

and the universal scaling function

'D~(z, y) = (1/v'2vr)exp( —x[1 ~ 4+g~(y) ] /2). (6)

As usual, we expect the critical exponents P, w, b, and
o and the scaling functions M and D to be independent
of many details of the system (and thus the same for the-
oretical models and real materials), but to depend on di-
mension, the range of the interaction, and the symmetries
of the order parameter. Measuring the avalanche size dis-
tribution for different values of the randomness in sim-
ulated systems up to size 200, and studying finite-size

3349



VOLUME 70, NUMBER 21 PHYSICAL REVIEW LETTERS 24 MAY 1993

scaling, we estimate that 1/cr 2.9+0.15, i = 1.35+0.2,
P 0.17 + 0.07, P6' = 2.02+ 0.3, v 1 + 0.1 (v de-
scribes how the correlation length changes with R —R,),
R, 2.23+0.05, and H,"(R,) 1.39+0.02 (details to be
published). These exponents agree with the inequalities
dv ) P(1+6), 1/(o.v) & d, 2 —i ) crP(6 —1), the last of
which we believe to be an equality for our system.

Does the critical behavior predicted here exist in the
real world? An FeNi alloy showed a crossover from
athermal to burst (infinit avalanche) behavior as the
grain size was varied [11].Grain boundaries are not ran-
dom Fields, but we expect critical fluctuations and scal-
ing where the bursting first occurs. The distribution of
avalanches in magnetic systems has been studied, and
some preliminary Fits to power laws have been made [2].
Avalanches and hierarchies have been implicit in the lit-
erature since the 1920's; power laws and critical scaling
are the tools needed for understanding the collective be-
havior being studied now.
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