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Gapless Spin-Fluid Ground State in a Random Quantum Heisenberg Magnet
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We examine the spin-8 quantum Heisenberg magnet with Gaussian-random, infinite-range ex-
change interactions. The quantum-disordered phase is accessed by generalizing to SU(M) sym-
metry and studying the large M limit. For large S the ground state is a spin glass, while
quantum fluctuations produce a spin-fluid state for small S. The spin-fiuid phase is found to
be generically gapless —the average, zero temperature, local dynamic spin susceptibility obeys
g(u) in(l/~w[) + i(vr/2)sgn(u) at low frequencies.

PACS numbers: 75.10.Jm, 05.30.—d, 75.50.Ee

Random quantum spin systems offer a useful labora-
tory for studying the fascinating interplay between strong
interactions and disorder. Though not as complex or in-
tractable as metal-insulator transition systems, they are
still rich enough to display a host of unusual physical phe-
nomena. Moreover, they can be realized in a number of
experimental systems, many of which have been studied
intensively in recent years [1—5).

It is useful to distinguish two diff'erent types of possi-
ble ground states of a random quantum magnet: (a) a
state with magnetic long range order ((8,) g 0 where 8,
is the spin operator on site i) which can be a spin-glass,
ferromagnet, or an antiferromagnet; (b) a quantum dis-
ordered (or "spin-fluid") state in which (8,) = 0 due
to the presence of strong quantum fluctuations. Many
properties of the magnetically ordered phase can be de-
scribed by a semiclassical analysis. In contrast, the spin-
fluid phase and its zero-temperature phase transition to
the magnetically ordered phase are intrinsically quantum
mechanical, and their properties are only very poorly un-

derstood. This paper shall mainly focus on the properties
of the spin-fluid phase.

We begin by recalling earlier work on spin-fluid states.
In early studies of random-exchange spin- 2 Heisen-
berg spin chains by a numerical renormalization group
method, Ma and co-workers and others [6] noted that
the low temperature spin susceptibility g(T) behaved ap-
proximately like T with n ( 1. This behavior, and
their analysis, suggested that the quantum disordered
phase of spin chains generically possesses gapless exci-
tations: the low energy excitations arose from a signif-
icant probability of finding a pair of spins which were
essentially decoupled from the rest of the system, and
with only a weak, mutual, effective exchange interaction.
Subsequently, the numerical y(T) obtained by Bhatt and
Lee [7] of a dilute three-dimensional random-exchange
spin-2 Heisenberg antiferromagnet with short-range in-
teractions could be well fit by T with n —0.66.
Experiments [8] on many lightly doped semiconductors
have also found similar behavior in the low tempera-
ture spin susceptibility; however, somewhat surprisingly,
this behavior appears to persist in denser, more strongly

doped systems. More recently, Doty and Fisher [9,10]
have obtained numerous exact results on random quan-
tum spin chains; in particular, Fisher [10] proved that
the random-exchange, spin-2 Heisenberg chain has y
1/[T ln (1/T)] and is gapless.

In this paper we introduce a new solvable, random-
exchange, quantum Heisenberg magnet —its solution re-
duces to the determination of the properties of an integro-
differential equation, which is a diKcult, though not im-
possible task. Our model possesses infinite-range ex-
change interactions, and is thus a solvable limit which is
complementary to the spin chains. Over a certain range
of parameters, our model is argued to possess a spin-fluid
ground state, which is found to be generically gapless.
However, the physical mechanism of the gaplessness ap-
pears to be quite different from that of the random spin
chains and the Bhatt-Lee analysis [7]. Which of these
two limits is closer to realistic, dense three-dimensional
models remains an open question. Finally, our model is
expected to display a transition to a spin-glass phase. We
have not yet succeeded in unraveling the nature of this
transition and that of the replica symmetry breaking in
the spin-glass phas" these are issues we hope to address
in a future publication.

The main result discussed in this paper is that the
T = 0, average, local dynamic spin susceptibility of our
model has the following form over the entire quantum
disordered phase:

1 l
g(~) = Ã ln [ + i —sgn(cu)

where X is a constant to be determined below, and the
omitted terms are subdominant in the limit [w~ ~ 0.
A notable feature of this form is that it is identical to
the "marginal" Fermi liquid susceptibility proposed on
phenomenological grounds by Varma et aL [ll] as a de-
scription of the electronic properties of the cuprates. It
is not completely unreasonable to begin a study of the
low-lying spin Quctuations in the cuprates by using the
infinite-range quantum spin model described below; how-
ever, at present we have no arguments which can deter-
mine whether, or how, the marginal spectrum will survive
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in more realistic models with charge carriers and Gnite-
range interactions. Nevertheless, to our knowledge, ours
is so far the only bulk model to display the marginal
spectrum over an entire phase, and one might hope that
mathematical structure of the mean-field theory is of
broader significance.

We consider the ensemble of Hamiltonians

Here a, 6 = 1, . . . , n are replica indices, 7. and 7' are Mat-
subara times, and S~ is the single-spin kinematic Berry
phase term [12]. The Edwards-Anderson order parame-
ter [16] for the spin-glass phase is qEA = Q ~(r —+ oo).
Moreover, Q ~, a g b, is 7 independent and nonzero only
in the spin-glass phase [17,18].

An exact evaluation of Zo is clearly not possible. We
therefore consider the large M limit, discussing first the
limit (C) above. This is achieved by the Schwinger boson
realization of 8:

where the sum over i, j extends over N —+ oo sites, the
exchange constants J,~ are mutually uncorrelated and se-

lected with probability P(J;z) exp[ —J2/(2J )], the 8
are the spin operators of the group SU(M), and the states
on each site belong to a representation labeled by the in-

teger ni, [nb = 28 for SU(2); more generally nt, is the
number of columns in the Young tableau of the represen-
tation [12]]. This model has been considered previously

by Bray and Moore [13] for the group SU(2); they found
strong evidence in favor of the presence of spin-glass or-
der at T = 0 for all values of S. Accessing the spin-fluid

phase therefore requires considerations of groups other
than SU(2); following a technique which has been suc-
cessful in clean antiferromagnets [12,14], we generalize to
the group SU(M) and study the phase diagram in the nb

M plane. [We have also studied the properties of random

Sp(M) [15] magnets with results that are very similar to
the simpler SU(M) case considered here. ]

The system becomes solvable in three interesting limits
in the ng-M plane (taken after the N —+ oo limit). (A)
ng —+ ao, M fixed. This is the semiclassical limit and
yields ground states well within the magnetically ordered
spin-glass phase. (B) M ~ oo, nb fixed. It can be proved
order by order in 1/M, that the ground state in this limit
is always a spin fluid. (C) M —+ oo, ni, /M = K fixed.
This is in many ways the most interesting limit, because
by varying K one ean interpolate between the spin-glass
and spin-fluid phases. Moreover, one expects a phase
transition between these two ground states at a critical
value of v = K, .

The structure of the mean-field theory obtained in the
N ~ oo limit was discussed in Ref. [13]. We express the
partition function as a coherent-state path integral [12],
introduce n replicas, average the partition function, and
the saddle point reduces to the quantum mechanics of
n replicas of a single spin; assuming the saddle point is
spin-rotation invariant (this is true in both the spin-fluid
and spin-glass phases) we obtain the single-site coherent-
state path integral Zo = f 138exp(Z) with

1/T
drdr Q (7 —r )8 (r) ' 8 (r ) (3)

and the self-consistency condition

Q'(r —r') = M, (8 (r) 8'(r'))z'

) b„tb"=nb, (5)

where 6 is a boson annihilation operator, p, , v = 1, . . . , M.
In the large M limit, Eqs. (3) and (4) reduce to the fol-
lowing equations for the boson Green's function Ga (r) =
(1/M) P„(T(bi'(r)b~t(0))) and its Fourier transform

Ga~(i(u„):

b'av ga$ b'avP P

Ga (uu„)= [
—i~„+A —Za (i~„)] (6)

~a'(r) = J'Ga'(r)Ga'(r)Ga ( r)—(7)

iAe '
Ga(z) = +, Im(z) & 0,

z

where A ) 0. The positivity conditions on the spectral
weight require 0 & 8 & vr/2. Inserting this into (7) we

find for Im(z) & 0 that

while Q ~(r) = Gz"(r)Ga ( r). Her—e A is a chemical
potential set by the constraint G (r = 0 ) = z
two equations can be combined into a single integrodif-
ferential equation for Ga~(r). We also require that solu-

tions satisfy conditions imposed by the spectral represen-
tation of a boson Green's function: G~& (z) is analytic for

Im(z) & 0, w Im[Ga (a + i0+)] & 0 and Ga (z) —1/z
for large ~z~. The replica-diagonal components of Eqs. (6)
and (7) also bear a formal resemblance to a perturbative
solution of the infinite-dimensional Hubbard model [19];
however, there are some signi6eant differences which turn
out to have dramatic consequences in the nature of the
solution.

We will focus here only on the spin-fluid phase, whence
all correlations are replica diagonal, and replica indices
will be dropped. An immediate consequence of (6)
and (7) is that the zero-temperature boson spectrum
must be gapless. For suppose that the spectral weight

Im[Ga(ur + i0+)] = 0 for ~a~ & 4, then (7), expressed
in real frequencies, implies that 1m[Ra(u+ i0+)] = 0 for

~w~ & 36—this agrees with the real-frequency version of

(6) only if 6 = 0.
Let us focus on the low-frequency behavior of G~.

Assume that Ga (u) w", then from (7) we get
1m[Ra(a)] w + ". This can be consistent with (6)
only if A = Za(cu = 0) and p, = —z. As Ga is analytic
in the upper-half frequency plane, we write
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J~As sin(28)
Zg(z) = Eg(0) + i e' Pz+

Finally, this is consistent with (6) if A = Z&(0) and

1/4

i, J~ sin(28)

The parameter 0 remains undetermined. This is fortu-
nate, as we need a single degree of freedom to satisfy
the boson-number constraint G~(r = 0 ) = K. We will
treat 8 as the independent parameter, with Ir, (8) a func-
tion to be determined. We expect K —+ 0, as 8 ~ 0;
increasing t9 therefore corresponds to increasing "spin. "
We can also determine the low-frequency behavior of the
spin-susceptibility y(~) = Qaa(~); we find that it has the
form (1) with the constant X given by

0.6—

&C

0.4
E

0.0—
0.0 0.5 1.0

[vr sin(28)] ~

2J
We expect the low-frequency susceptibility to increase
monotonically with increasing spin n, and therefore in-
creasing 8. However, X has a maximum at 8 = vr/4.
This leads us to conjecture that the transition to the
spin-glass phase occurs at 8 = x/4 and only the range of
values 0 ( 8 ( vr/4 correspond to the spin-fiuid phase.
A second possibility, which cannot be ruled out, is that
there is a erst-order transition to a spin-glass phase at a
value of 8 ( ~/4.

We have performed a detailed numerical study of Eqs.
(6) and (7) to determine the complete frequency depen-
dence of Green's function. We chose a value of 8 and
a trial form for Im[G~(w + i0+)] whose low-frequency
limit satisfies Eq. (8). The real-frequency version of
(7) expresses Im[Z~(~ + i0+)] as a double convolu-
tion of Im[G~(u + i0+)]; these convolutions were per-
formed by direct numerical integration. The real part
Re[Z(a + i0+)] was determined by a Kramers-Kronig
transform, and A was set at A = Z~(cu = 0). Fi-
nally Im[G~(a + i0+)] was determined from (6) and
the whole procedure was iterated until the solution con-
verged. The singularities in G~ and Z~ at low frequen-
cies were accounted for by performing the numerical inte-
gration in a variable 2: ~is at the integration end points—this absorbed the leading singularity. Subleading sin-
gularities were treated by using a dual mesh-size in the
integration —a very fine mesh (x spacing = 0.0003~J)
was used at; the end points and a coarse mesh elsewhere.
Up to 1700 points were used in the numerical integration.
There was little difFiculty in converging to a solution for
values of 8 less than approximately x/6; we are reason-
ably certain that there are physically sensible solutions of
(6) and (7) for this range values of 8. One such solution,
at 8 = x/12 is shown in Fig. 1 which was found to have
r = 0.051. The numerical iteration became increasingly
unstable with increasing 8 and did not converge to any
smooth solution for large 0. Our numerical experience is

FIG, 1. Spectral weights of G@ and y for the bosonic rep-
resentation (5) at 8 = n'/12. The "spin" nb is of order M:
nb = KM, and for this value of 0, we found K = 0.051. The
sum rule for y is f ckuIm[y(u)] = 7rrc(1+ r).

consistent with the conjecture that there are no physi-
cally sensible solutions for 8 ) vr/4 —this is the range of
values of 8 where we expect a spin-glass phase.

The above analysis yielded an appealing picture of a
spin-fIuid state; however, one might worry that this state
is merely an unstable saddle point and that the ground
state of 'H is always a spin glass. To address this issue,
we study the large M limit (B). This takes M ~ oo at
fixed spin nt„one is then in a region where the quantum
fIuctuations are strongest. For technical reasons it is also
necessary to introduce of order M rows in the Young
tableau of the spin representation; this is discussed in
some detail in Ref. [12]. We will focus on the particle-
hole symmetric representations which have ng columns
and M/2 rows as realized by the following operator de-
composition:

gav ) fa$ faav ) fat faPiJ, CPM/2

where f is a fermion annihilation operator. The fermions
carry replica, spin, and "color" indices n, P = 1, . . . , nb
The subsequent analysis parallels closely that for the
bosons with one key difference: it is impossible for
the fermionic quanta to condense, immediately rul-

ing out the possibility of a spin-glass state. The
fermion Green s function is always replica and color di-
agonal and its only nonzero component is G~(r)
(1/M) P„(T(f &(w)f &~(0))). Equation (7) is replaced
by

and the positivity constraints on the fermion spectral
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has been answered for a simpler infinite-range quantum
spin glass [18] where it was found that I/M corrections
did not modify the low-frequency behavior of the spec-
tral weight. The structure of the fluctuations about the
present mean-field theory is much more involved, but it is
reasonable to expect that a similar phenomenon will oc-
cur here. (b) Moving to finite dimensions is expected to
enhance the stability of the spin-fluid phase. However,
this tendency will compete with the reduced quantum
fluctuations at smaller values of M. Does Zo describe
the spin-fluid phase or its phase transition to spin-glass
order in large dimensions and finite M? (c) How are these
results modified in ensembles with a nonzero average
J. . '7
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FIG. 2. Spectral weights of G~ and g for the fermionic
representation (12). Now the spin nb is of order unity, and up
to rescaling, the solution has the same form for all nb. The
sum rule for y is f ~ 1m[a(u)] = vrnb/4

weight is Im[GF (w+ i0+)] & 0. The presence of particle-
hole symmetry requires that Im[GF (w + i0+)] is an even
function of u—this simplifies the analysis considerably.
The low-frequency limit of GF can be determined com-
pletely:

GF(z) = ], [
+ . , Im(z) &0.l '?'

(—1+i)
q4Jsnb) z

The dynamical susceptibility is found to have the same
low-frequency dependence as in (1), with the constant X
now given by

(14)

As expected, X is a monotonically increasing function of
nb Acorn. piete solution was obtained numerically and
the results are shown in Fig. 2.

The existence of a spin-fluid ground state in the
fermionic theory has now been established. The iden-
tical low frequency forms for g(cu) in the fermionic and
bosonic theories is evidence that the spin-fluid phase in
the bosonic theory is a true ground state and is continu-
ously connected to the fermionic state.

The key unresolved issue in this work is of course
the range of validity of the dynamic susceptibility in
Eq. (1)—this is important in determining the signifi-
cance, if any, of our results for dynamic neutron scatter-
ing experiments on random antiferromagnets [1—3]. (a)
What are the consequences of I/M fiuctuations in the
infinite-range model Zo [Eqs. (3) and (4)]? This question
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