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Dynamical Confinement of Twisted Soliton Pairs in Biaxial Ferromagnets
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The dynamics of a classical continuum model of a ferromagnet with exchange and anisotropy
energies of hard- and easy-axis type is considered. Exact solutions of soliton pairs with vanishing
center of mass velocity are presented. They reveal the counterintuitive existence of a family of bound
states of a repulsive, twisted domain wall (soliton) pair. These breather states have energies which
lie above the continuum of the corresponding scattering states of two solitons.
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It is widely believed that a classical bound state only
exists if the energy of its constituents exhibits a local min-
imum. In this Letter, it is shown for the first time that
the dynamics of ferromagnetic domain walls provides an
apparent counterexample to this presumption.

Ferromagnetic domain walls (solitons) describe the
gradual change of the magnetization between two uni-
form domains of minimal anisotropy energy. Since the
exchange interaction can be regarded as a stifFness of the
magnetic system, two untwisted domain walls experience
an attractive force while two twisted domain walls are re-
pulsive. By means of an exact, time dependent solution of
the conservative Landau-Lifshitz equation we shall show
the surprising fact that two repulsive solitons can form a
bound state. This state is of purely dynamical origin and
its existence cannot be predicted by energy or topology
considerations. The two solitons oscillate around their
center of mass while the magnetization at the domain
wall centers is precessing monotonically.

The energy of this breather state is shown to be higher

than any scattering state of two solitons. This is in
sharp contrast to other nonlinear systems where breath-
ing states [1] of two solitons always have a smaller en-
ergy than two static solitons. This surprising efFect is
intimately connected to the precessional nature of the
equations of motion. They are not Lorentz invariant and
the kinetic energy of moving solitons is bounded in con-
trast to relativistic systems. In combination with the
integrability of the system, it is ultimately this bounded-
ness of the kinetic energy that gives rise to this peculiar
phenomenon. The exchange energy cannot be fully con-
verted into kinetic energy thus leading to the confinement
of the two solitons in a high energy state. In this connec-
tion, note also the failure of the common construction of
momentum in classical spin chains [2].

The ferromagnet is described within a classical con-
tinuum model. In dimensionless units the magnetiza-
tion is represented by the unit vector M = (sin 8cos P,
sin8sing, cos8) and the energy per unit area of planar
symmetric structures is given by

dx —[(0~8) +sin 8(0~$) ]+ sin 8cos P+ —sin28
2 2 2

where 8 = 8(x, t) and P = P(x, t) and 0~ = 0/02:. The
first term is the classical counterpart of exchange energy,
the second and last terms are hard-axis and easy-axis
anisotropies, respectively, which are of crystalline or de-
magnetizing origin. The constant Q describes their rel-
ative strength. The motivation for the one-dimensional
description (1) is the experimental evidence of planar
symmetric static and moving domain walls in ferrornag-
netic films [3] and bulk ferromagnets [4] as well as the
existence of effectively 1D magnetic materials [5]. In the
presence of an external magnetic field, this model de-
scribes static confinement of two twisted vr Bloch walls

[6, 7) and nuclei for magnetization reversal [8).
In high purity ferromagnets damping is extremely

small [4] and we are thus motivated to study the purely
conservative time evolution 0~M = —M x H,g corre-
sponding to the precession in the effective Geld H, ff
—6Z/bM (b/6'M is the functional derivative). In spheri-

bE
sin8clig = 1 bE

sin 8 6'P' (2)

where 8 is given by (1). The model (2) has several in-
teresting features. For large hard-axis anisotropy Q i —+

oo, the topology of the configuration space is tuned from
a sphere into a circle while the dynamics (2) merges [7]
into a sine-Gordon (SG) system in the easy-plane angle.
Note that the latter system is relativistically invariant, in
contrast to (2). Conversely, the present system may be
considered as an extension of the SG system by allowing
the field to "escape" into the third dimension along the
hard axis. It is remarkable that this extension leads to a
bound state of the formerly repelling SG soliton-soliton
pairs. Note also that the energy density (1) is equivalent
to that of the ubiquitious nonlinear O(3) o model with

1993 The American Physical Society 3335



VOLUME 70, NUMBER 21 PH YSICAL REVIEW LETTERS 24 MA+ 1993

anisotropies.
The system (2) has been proven to be integrable [9]

but the evaluation of two-soliton solutions by the inverse
scattering method proved to be extremely tedious even
for simpler models [10]. Exact two-soliton solutions have
been presented [ll] but have not treated twisted soliton
pairs with vanishing center of mass velocity. Hirota's
formalism [12] has also been applied [13] and the results
have been reviewed [14]. Unfortunately, the gyroscopic
constraint relating the sign of the out of easy-plane com-
ponent and the direction of motion has not been taken
into account [15]. Since this constraint is crucial for the
prediction of a bound state, we explicitly construct two-
soliton solutions with vanishing center of mass velocity
in the sequel.

The symmetries [16] of the equations of motion (2)
allow us to parametrize solutions on the domain 0
P & 2ir and 0 & 8 & 2ir. Furthermore, we restrict our-
selves to solutions with one specific set of boundary and
initial conditions for 8 and P, respectively. Equivalent
solutions are obtained by nontrivial symmetry transfor-
mations [16].

As a topological characterization of one- and two-
soliton solutions with spatially uniform P we introduce
the twist

1
q(t) = sgn[P(t) —vr] dx (x, t),

86I

where the parametrization of the solution is such that
0 & P & 2ir and we define sgn(0) = +1. Single solitons
have lql = 1/2. Soliton pairs with q = 0 have oppo-
site relative twist whereas soliton pairs with lql = 1 are
twisted. Note, however, that q is in general not a topolog-
ical invariant. The only topological invariant of soliton
solutions of (2) is Q =

2 [M, (z = oo) —M, (2: = —oo)].
For a better understanding of two-soliton solutions, we
briefIy recall some properties of one-soliton solutions of
(2).

One soli ton solut-ions. They have —the form [17]
8a-(s —vt), P = const with

8~(s) = 2 arctan(e '), (4)
and hence lql = 1/2. The constants 6', P are connected
via b 2 = 1 + Q i cos P and v, P obey the gyroscopic
constraint (cf. Fig. 1)

v = (Q '/2) sin2$. (5)
Note that here b has arbitrary sign. For P = +m/2, 0, ir,
Eq. (5) describes static Bloch and Neel domain walls,
respectively.

Since the equations of motion are not relativistically in-
variant, moving solutions cannot simply be obtained by
boosting static solutions to a certain velocity. A physical
mechanism different from Lorentz invariance is responsi-
ble for the motion of solitons. In a moving soliton, the
magnetization at the center (8 = ir/2) of the soliton is
tilted out of the easy plane. This hard-axis component

M(oa) Jl

I IG. 1. Mechanism of motion of a single soliton. The out
of easy-plane component of M creates an effective magnetic
field H e = —Q 'M e at the soliton center. This field in-
duces a torque on the magnetization and the soliton moves.
Note that the sign of the velocity v is uniquely determined by
the boundary conditions and the sign of sin 2P.

(7)8p = 8' (Rp —x/6'p) + 8' (x/tip + Rp),
whereas for a twisted pair of domain walls (lql = 1) we
write

8, = 8R (x/6i —Ri) + 8~(x/bi + Ri). (8)

The configurations (7) and (8) are static structures only
in the presence of an external magnetic field along the
z axis [6—8]. Without an external field we expect the
structures (7) and (8) to undergo a dynamic behavior.
The energy of (7) and (8) with P = Sir/2 is given by Fp =
4' tanh Bo and E'i ——46' coth R~, respectively. This is
in accordance with the intuitive picture that untwisted
domain wall pairs tend to attract each other, whereas
twisted domain wall pairs repel.

Now we are going to show that the statically repelling
domain walls can form a dynamically bound state under
certain conditions. To this end we look at the simplest
dynamic generalizations of (7) and (8). We put P = P(t)

induces a nonvanishing efFective magnetic field in the 2:
direction and causes the soliton to move (cf. Fig. 1).

The energy of a moving soliton (4) is given by

~~ = 2/lt)l (6)
where 0 & 6 z & 1 + Q . The lower and upper lim-
its of (6) are attained for static Bloch and Neel walls,
respectively. For low velocities of a Bloch domain wall

(P =
2 + p, y « 1) it reduces to S~ = 2 + Q iy2 show-

ing that the hard-axis anisotropy can be considered as
the kinetic energy of the soliton.

There are close analogies to a relativistic field theory:
The maximum velocity v „=gl + Q i —1 of a soli-
ton is finite and the width of a Bloch domain wall shrinks
with increasing velocity. There is, however, an important
difference: When the soliton reaches the maximum ve-
locity v „, the energy (6) and hence the soliton kinetic
energy remains finite. This is in fact the crucial point for
the existence of a breather solution as described below.

Two-soli ton solutions. —Consider a pair of domain
walls (4) with width b' ) 0 centered at x/6 = +R with
P = const, e.g. , P = ir/2. Arranging them such that they
are untwisted, i.e. , q = 0, we have
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and in (7) and (8) R, = R, (t), i = 0, 1, or equivalently

8 = 2arctan [f(t)4(z)], P = P(t), (9)
with arbitrary f and 4. Inserting (9) into (2) we obtain

B&f =Q f sinPcosP, (10)

l9~8 + K ff (t) sin 8 cos 8 + h, ff(t) sin 8 = 0, (ll)
where we have introduced a time dependent effective field
h, ff(t) = —t9qp ) 0 and a time dependent anisotropy
K,ff(t) = 1 + Q cos p. The restriction in the sign of
Oqg is due to symmetry [16(ii)]. Equation (11) is identical
in form to the Euler-I agrange equations describing static
structures in the presence of an external field. Integrating
(ll) with 0 8 at a fixed time we obtain the first integral

(0 8) + K,ff(t) cos 8+ 2h, ff(t) cos8 = C(t). (12)
Equation (12) has the form of an energy conservation
and thus the qualitative behavior of soliton solutions can
be extracted from a phase portrait discussion. For C =
K ff 2h ff we obtain a solution that makes an excursion
from 6I = vr returning to the same value. C = K,ff + 2h, ff
leads to a solution connecting two subsequent "potential
maxima" at I9 = 0 and I9 = 2'. The former solution
evidently belongs to q = 0, the latter to ~q~

= 1.
For C = K,ff +2h, ff, Eq. (12) can easily be integrated.

The consistency of the ansatz (9) requires the character-
istic width bi & 0 to be time independent

6r ——1 —
Ogler + Q cos Pr = const. (13)

In order to meet our restriction 0&/ & 0 we have
1 & tIr & oo. The subscript indicates that this so-
lution belongs to q~

= 1. Furthermore, we obtain
f = br [

—Oqgr] ~ . Together with (13), Eq. (10) is
easily verified, showing the consistency of the ansatz (9).
Integrating (12) and (13) and choosing 2: = 0 as the cen-
ter of symmetry we obtain 8i as given in (8) but with
time dependent Ri and Pr which are parametrized by
b'r ) 0:

I, 1 &6r'& I+Q '.

and such that Pr(t) is continuous. The solutions (8) with
(14)—(16) are defined on the extended domain 0 & 8 &
2'. Note that the solution II may be obtained from I by
analytic continuation to values 6r & Q + 1.

Equations (8) and (14) describe the scattering of two
twisted solitons. For t —+ —oo they are converging from
infinity, each with velocity v = vbi, and establish an
out of easy-plane component in accordance with (5).
They are scattered at t = 0 with Bj ——B;„=—arctanh 6'q

in a Blo'ch configuration, P = rr/2. For t ~ oo they re-
turn with reversed velocities to x = +oo. This behavior
is reminiscent of other nonlinear field theories.

Case II describes a bound state of a twisted soliton
pair, a so-called breather state. The solitons oscillate
between R~;„and R ~„= arctanh(br[1 + Q ] ~ ) cov-
ering Bloch (P = ir/2, 3m. /2) and Neel (P = 0, vr) config-
urations, respectively (see Fig. 2). The angle P and the
direction of soliton motion satisfy (5) for any t.

Case III is the limiting case corresponding to two ini-
tially resting solitons at infinity.

The total energy per unit area (1) of configurations
I—III is given by

Sr = 4/6r. (»)
Comparing I and II, we recognize that the energy Ei of
the ]q~ = 1 breather is always higher than that of the
scattering solutions. This is a surprising fact and re-
quires further explanation. The motion of soliton pairs
is characterized by the conversion of exchange energy
and soliton kinetic energy (alias hard-axis anisotropy en-

ergy) into each other. Let us consider a twisted soliton
pair in a Bloch configuration, i.e., vanishing hard-axis
anisotropy (cf. Fig. 2). Subjected to the equations
of motion (2), the solitons initially separate from each
other. For Fr & 4+1+ Q i, the angle P is monotonr-
cally decreasing but it never reaches the hard-axis state
(P = 0, 7r) and the solitons uniformly diverge to infin-

ity. However, for Zr & 4/1+ Q i, a state of maximum
hard-axis anisotropy is reached (cf. Fig. 2). Despite the

1
Ri (t) = arccosh

~

g vair
1 —6r + Q i cosh vt i,

Pr(t) = arctan v(tI'r —1) coth vt

where v = [(br —1)(l+ Q —br )] ~ .
II, 1+Q-' & br

' & oo:

1
Ri (t) = arccosh

~

q ur6r
—1 —Q r cosa crt)

(15)

(16)

The branch of arctan is chosen such that Pr(0) = x/2

Pr(t) =arctan w(6r —1) cot~t

with the frequency cu = [(br —l)(6'r —1 —Q r)]r~s.
III, 6r ——1+Q " separates the above cases:

ttr(t) =arccostr(lt'1+Qar 1 +Q t ),
Pr (t) = arctan (Qt ) .

FIG. 2. Time evolution of the ]q~ = 1 breather (8) and
(»).

3337



VOLUME 70, NUMBER 21 PHYSICAL REVIEW LETTERS 24 MAY 1993

fact that the exchange energy still would favor a further
separation, the two solitons are confined in an energeti-
cally unfavorable state, periodically converting exchange
and hard-axis anisotropy energy. Thus the boundedness
of the kinetic energy is crucial for the existence of this
type of breather. If the kinetic energy were unbounded,
the excess in exchange energy could be completely con-
verted into kinetic energy and the two solitons would not
be bound.

It is instructive to compare this behavior with the dy-
namics of the q = 0 soliton pair. Since this result has
already been quoted [ll], we restrict ourselves to a short
discussion. The dynamic solutions arise from the inte-
gration of (12) for C = K,tr —2h, tr. They have the
form (7) with Rp = Rp(t) and &P = P(t). Analogous to
[q[ = 1, three different cases have to be distinguished:
For 1 ( Ltp ( 1+Q scattering solutions are obtained.
For 0 ( 60 & 1 breathing solutions exist and the lim-
iting case bo = 1 corresponds to a scattering solution
of two initially resting solitons. The energy is given by
Ep = 4/6'p. In contrast to the ]q] = 1 case, the lowest
lying states are now the breathing states (cf. Fig. 3).

The existence of a bound state of a twisted soliton
pair is not the only peculiarity of the present system.
Naively one would expect that solitons converging from
infinity with identical initial velocities would approach
more closely if they form an untwisted pair than if
they are twisted. Comparing the solution of (12) for
C = Keg —2heir with (14), we recognize that this is
in general not true. A large initial hard-axis component
of an untwisted soliton pair prevents a convergence of
the constituents since the "kinetic" energy is already ex-
hausted.

There are two possible experimental realizations of this
surprising effect. Applying an external field along the z
axis, the twisted domain wall pair (8) may be squeezed
[7]. Switching off the external field, the domain walls may
remain dynamically conGned for a certain time provided
that the initial excess in exchange energy was suKciently
large and damping sufficiently small. Second, Eq. (11)
shows that the confinement is due to an effective Geld
arising from the precession. Conversely, this precession
may be maintained by a pulsed external magnetic field
thus leading to a confinement of the domain walls.

However, for 3D ferromagnets, these scenarios are
based on the assumption that the domain walls do not
develop instabilities violating the premise of planar sym-
metry. Including shape demagnetizing effects and damp-
ing, this issue has been examined numerically [18] for
small particles. The results support our assumptions:
For strong pulses of the external field, the formation of
Bloch lines is suppressed and domain walls propagate
retaining their planar symmetry. Furthermore, the inter-
action of twisted and untwisted domain wall pairs may
clearly be distinguished showing that the exchange in-
teraction of domain walls dominates over demagnetizing
induced repulsion [3].
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I IG. 3. Energy spectrum of two-soliton solutions with
V = 0 for iq] = 1 and q = 0. Note that the iqi = 1 breather
states always have larger energy than two independent soli-
tons moving at arbitrary velocity.

Other expected candidates for such anomalous
breather states are systems where the kinetic energy of
solitons is bounded.
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