Scaling of the Flux Pinning Force in Epitaxial Bi₂Sr₂Ca₂Cu₃O_x Thin Films

H. Yamasaki, K. Endo, S. Kosaka, M. Umeda, S. Yoshida, and K. Kajimura

Electrotechnical Laboratory, Ministry of International Trade and Industry, 1-1-4 Umezono, Tsukuba-shi, Ibaraki 305, Japan

(Received 16 November 1992)

Magnetic-field and temperature dependence of the critical current density J_c is investigated in epitaxial Bi₂Sr₂Ca₂Cu₃O_x thin films. For the magnetic field *H* applied parallel to the *c* axis, the flux pinning force density F_p (= J_cB) exhibits clear scaling behavior when *H* is normalized by the irreversibility field H^* . The maximum pinning force density scales linearly with H^* . This is the first observed scaling of F_p in high-quality thin films of Bi oxides, which we can reasonably explain with flux-creep theory by assuming that the activation energy is proportional to the flux line spacing.

PACS numbers: 74.60.Ge, 74.60.Jg, 74.72.Hs, 74.76.Bz

Bi oxide cuprate superconductors, Bi₂Sr₂CaCu₂O_x (Bi-2212) and Bi₂Sr₂Ca₂Cu₃O_x (Bi-2223), are technologically important because relatively high transport critical current densities, $J_c \sim 10^8 - 10^9$ A/m², can be obtained in polycrystalline samples such as Ag-sheathed tapes [1,2]. J_c , however, declines precipitously with magnetic field at moderate temperatures (> 30 K) because of weak flux pinning [1]. The mechanism controlling J_c in the Bi oxides is one of the key issues for the application of this material. The irreversibility temperatures and the irreversibility fields H^* above which magnetization becomes reversible and hence J_c becomes zero are much lower than those observed in YBa₂Cu₃O₇ (YBCO) [3].

Recently, we prepared high-quality, epitaxial Bi-2223 thin films by metalorganic chemical vapor deposition, showing high critical temperatures T_c of 92-97 K [4]. These films have the highest reported J_c for the Bi-oxide system: $J_c \ge 10^9$ A/m² at 77.3 K in high magnetic fields (1-8 T, $H \parallel a-b$ plane) [4,5]; zero field $J_c = 1.3 \times 10^{10}$ A/m^2 at 70 K and $10^{11} A/m^2$ at 30 K [6]. In this Letter we report clear scaling behavior over a wide temperature range, 20-60 K, for the flux pinning force density F_p , calculated from J_c values measured in fields parallel to the c axis. Such F_p scaling has been observed in the transport J_c of YBCO polycrystalline thin films [7] and epitaxial films [8,9] in limited temperature ranges, but until now was not reported for high-quality Bi-oxide thin films. The F_p scaling, which is technologically important in predicting the J_c behavior in magnetic fields, is reasonably explained using flux-creep theory by assuming that the activation energy is proportional to the flux line spacing a_0

The details of sample preparation have been reported elsewhere [4]. The 60-80 nm thick films used in this study, deposited on LaAlO₃ (100) single-crystal substrates, were characterized by x-ray diffraction to be single-phase Bi-2223 thin films with the c axis oriented perpendicular to the film surface. High-resolution scanning electron microscopy and reflection high-energy electron diffraction observations confirmed that they were epitaxially grown without apparent grain boundaries.

The transport J_c was measured by a four-probe dc method for bridge patterns with narrow strip lines, 2 mm

long and 50 μ m wide, made by a chemical etching technique. Evaporated silver film pads were used as electrodes, which were annealed at 300 °C to reduce the contact resistivity. J_c is defined by a criterion of 2 μ V/cm electric field. Magnetic fields were always applied perpendicular to the transport current.

 $J_{c\parallel}(H,T)$ measured in applied fields parallel to the film surface (*a-b* plane) was almost field independent at temperatures $\lesssim 60$ K [Fig. 1(a)], while $J_{c\perp}(H,T)$ measured in fields perpendicular to the *a-b* plane decreased sharply with field except at low temperatures (≤ 20 K) [Fig. 1(b)]. Such anisotropic J_c behavior comes from the quasi-two-dimensional nature of the Bi oxides [6,10,11].

For magnetic fields applied parallel to the *c* direction, the flux pinning force density $F_p = J_{c\perp}(H,T)B$ was found to scale with the irreversibility field H^* and the maximum pinning force density $F_{p_{max}}$. H^* was determined to

FIG. 1. Critical current density J_c measured in a Bi-2223 thin film at various temperatures (a) in magnetic fields applied parallel to the *a*-*b* plane $J_{c\parallel}(H,T)$ and (b) in fields parallel to the *c* axis $J_{c\perp}(H,T)$.

3331

be the field at which J_c defined in this particular case by the criterion of 1 μ V/cm is less than 10⁷ A/m² [5]. The H^* values are not dependent on the definition much because of the steep J_c decline with magnetic field at $T \ge 30$ K [12]. When the magnetic field was normalized as $h = H/H^*$, clear scaling behavior was observed in F_p (Fig. 2). Similar scaling was also observed in the other two samples with lower J_c 's over the temperature range 20-60 K. The $F_{p_{\text{max}}}$ values scale linearly with H^* for three different Bi-2223 thin film samples as depicted in the inset of Fig. 2. The physical interpretation of these data will be given later. For YBCO a scaling of the form $F_p = K(H^*)^n \sqrt{h} (1-h)^2$ has been reported for a limited temperature range (71-81 K) [7,9]. However, too large H^* values at lower temperatures hindered the observation of the exact scaling behavior over a wider temperature range [7,8], and no analysis has been able to explain the F_p scaling for YBCO satisfactorily.

Figure 3 shows the Arrhenius plots of the resistivity $\rho(H,T)$ measured in fields parallel to the c axis for the same sample whose J_c data are shown in Fig. 1. $T_c(R=0)$ was ~86.5 K. Except near $1/T_c$ where superconducting fluctuations set in, these plots are almost linear in a wide 1/T range, which indicates that the resistance is caused by a thermally activated process. Temperature independent linear $\log \rho - 1/T$ plots have been reported for Bi-2212 single crystals [13] and thin films [14]. From the data of Fig. 3 the activation energy U_0 was calculated and plotted against H in the inset of Fig. 3. The $\rho(H,T)$ data were taken with small $J = 2.5 \times 10^6$ A/m². Essentially the same ρ -T curve was also obtained using a smaller current density, which means that the resistivity has been measured in the linear portion of the J-E characteristic. In this experiment, therefore, the calculated U_0 is for the limit $J \approx 0$. The inset of Fig. 3 indicates that U_0 is proportional to $H^{-0.51} \approx 1/\sqrt{H}$. This $1/\sqrt{H}$ dependence of U_0 has been demonstrated in the detailed analyses of $\rho(H,T)$ data in Bi-2212 thin films

[14,15] and has also been observed in Bi-2212 wires [16], although a 1/H dependence has been observed in YBCO [8,17].

The physical origin of the observed $1/\sqrt{H}$ dependence of U_0 is proposed by Geshkenbein *et al.* [18]. In this model U_0 is associated with the plastic deformation of flux line lattice (FLL) at FLL dislocations, analogous to the thermally activated motion of edge dislocations in crystals. U_0 is estimated as the energy required to create a double kink in the flux line,

$$U_0 = 2\varepsilon_1 a_0 \approx (\Phi_0^2 / 2\pi \mu_0 \lambda^2) \ln \kappa (\Phi_0 / B)^{1/2}$$

= $\mu_0 H_c^2 4\pi \xi^2 \ln \kappa (\Phi_0 / B)^{1/2}$,

where ε_1 is the extra energy per unit length of the flux line along the CuO₂ plane, λ the penetration depth, ξ the coherence length, and $\kappa = \lambda/\xi$ [18]. This model is similar to Tinkham's model of thermally activated vortex lattice shear which explains the 1/H dependence for YBCO [19], in that "the motion of a row of fluxons past neighbor rows" [18] occurs. However, in highly anisotropic Bi-oxide system, FLL deforms plastically forming double kinks rather than shearing without kinking [14,18].

We discuss the F_p scaling observed in our Bi-2223 thin films based on the theory of flux creep [20-22]. In intermediate magnetic-field range, $H_{c_1} \ll H \ll H_{c_2}$, collective effects of flux lines are important. The electric field induced by the motion of "flux bundles" is given by E $=Bdv_0\exp(-U_{eff}/kT)$, where d is a distance which the flux bundles move (of the order of a_0), v_0 is an attempt frequency, and U_{eff} is an effective activation energy. Thermally activated flux motion is assisted by the driving force F=JB, and in the original Anderson-Kim model U_{eff} is expressed as $U_{eff}=U_0-JBV_aX_p$, where V_a is the activation volume and X_p is the effective range of the potential well [20]. If $J_0=U_0/BV_aX$ is defined as the zerotemperature pinning force density when there is no thermal activation and $j=J/J_0$, U_{eff} can be written as $U_{eff}=U_0(1-j)$.

FIG. 2. Scaling of the flux pinning force density $F_p = J_c B$ measured with the field parallel to the *c* axis. Inset: Relationship between $F_{p_{max}}$ and H^* for three different thin film samples.

FIG. 3. Arrhenius plots of the resistivity $\rho(H,T)$ for the field parallel to the *c* axis. Inset: Activation energy U_0 plotted against applied field *H*.

Until now there have been many reports that suggest that U_{eff} is not a linear function of J, but has an upward curvature [17,23-25], which was already pointed out in the classical paper of Beasley, Labusch, and Webb [21]. Recent study on YBCO epitaxial films observed an E-J relation explained by $U_{\text{eff}} = U_0(1-j)\exp(-j)$ [17]. In our present study we assume a sinusoidal potential U(X) $= \frac{1}{2}U_0\cos(\pi X/X_p) - JBV_aX$ and $U_{\text{eff}} = U_0(1-j)^{3/2}$ [21, 24], which has a j dependence comparable to $U_0(1-j)$ $\times \exp(-j)$. It is to be noted that the functional form of $U_{\text{eff}}(j)$ does not much affect our analysis: The classical Anderson-Kim model was able to give a result similar to the present study. $U_{\text{eff}} = U_0(1-j)^{3/2}$ leads to

$$E = Bdv_0 \exp[-U_0(1 - J/J_0)^{3/2}/kT].$$
(1)

In our transport J_c measurement J_c was defined by an electric field criterion $E_c = 2 \mu V/cm$. By setting $E = E_c$ and $J = J_c$ in Eq. (1),

$$J_c = J_0 \{ 1 - [(kT/U_0) \ln(Bdv_0/E_c)]^{2/3} \}.$$
⁽²⁾

Since $\ln(Bdv_0/E_c)$ is a slowly varying function of H, we set $\ln(Bdv_0/E_c) = \ln(E_0/E_c)$ to be a constant [26]. When U_0 is expressed as $U_0 = \alpha(T)/\sqrt{H}$, as observed in our $\rho(H,T)$ data and in Ref. [14], and H_0 is defined as $(H_0)^{1/2} = \alpha(T)/[kT\ln(E_0/E_c)]$, $F_p = J_c B$ is calculated to be

$$F_p = J_0 B [1 - (H/H_0)^{1/3}].$$
(3)

We next need to calculate $J_0B = \pi U_0/2V_a X_p$. Since there have been no experimental results from which V_a and X_p can be estimated, we will make the following speculations. If the Lorentz force is exerted effectively on a row of flux lines having number N, the activation volume V_a can be expressed as $Na_0\xi_{ab}d_k$, where d_k is the length of the flux line along the c axis between the two kinks formed. If we assume that the flux lines are weakly pinned by prevalent pinning centers like point defects, the movable length d_k can be proportional to kT. The potential well range X_p is approximated by $a_0 \approx (\Phi_0/B)^{1/2}$. Since ξ_{ab} is weakly temperature dependent for low t $(=T/T_c)$ values,

$$J_0 B \approx \mu_0 K \alpha(T) \sqrt{H} / kT = \mu_0 K \sqrt{H_0} \sqrt{H^*} \sqrt{h} \ln(E_0 / E_c) , \qquad (4)$$

where $K = \pi [2N\xi_{ab}\Phi_0(d_k/kT)]^{-1}$. Putting $H^* = \beta^2 H_0$, we finally obtain

$$F_p = (\mu_0 K/\beta) H^* \ln(E_0/E_c) \sqrt{h} (1 - \beta^{2/3} h^{1/3}), \qquad (5)$$

which can explain the general feature of the F_p scaling and the linear H^* - $F_{p_{max}}$ relationship shown in Fig. 2. The curve fitting to the F_p data of 30 and 40 K in the range of 0 < h < 0.4 with $\beta = 1.25$ is shown in Fig. 4. Here, the intersection of the curve with the horizontal axis gives H_0 . We point out that in Eq. (4) J_0B is a monotonically increasing function of h (and H). This seems to be con-

FIG. 4. Curve fitting by Eqs. (5) and (7) to the F_p data of 30 and 40 K.

tradictory to the F_p behavior observed for conventional low- T_c superconductors [27,28]: The field dependence of F_p can be expressed as $(H/H_{c2})^p(1-H/H_{c2})^q$. Since the upper critical fields of Bi oxides are very high compared with H^* , e.g., $\mu_0 H_{c2} \approx 50$ T at 60 K for Bi-2212 single crystals [29], the term $1 - H/H_{c2}$, which describes the decrease of the mean superconducting condensation energy with the magnetic field [30], can be neglected in our analysis.

Up to the present stage we have neglected the possibility of flux motion in the opposite direction toward a higher energy barrier by assuming that $\exp(JBV_aX_p/KT)$ $\gg \exp(-JBV_aX_p/kT)$. However, this is not the case when the driving force gradient is small compared with kT. The equation which takes into account the probability of flux motion in both directions is [22,24]

$$E = 2E_0 \exp\{-U_0[(1-j)^{3/2} + (\pi/2)j]/kT\}$$

× sinh($\pi U_0 j/2kT$). (6)

This equation is applied for large h ($0 \ll h < 1$) where $j \ll 1$, and is reduced to $E = 2E_0 \exp(-U_0/kT) \sinh(\pi U_0 j/2kT)$, because $(1-j)^{3/2} + (\pi/2)j \approx 1$. By following the same procedure used to obtain Eq. (5), we get

$$F_{p} = (2/\pi)\mu_{0}KH^{*}h$$

× sinh⁻¹($\frac{1}{2}$ exp{[(1/ $\beta\sqrt{h}$) - 1]ln(E_{0}/E_{c})}). (7)

The curve fitting using Eq. (7) with $\ln(E_0E_c) = 8$ is also shown in Fig. 4. The experimental $F_p/F_{p_{max}}$ data agree well with the theoretical result. Equations (5) and (7) have three independent parameters—K, β , and $\ln(E_0/E_c)$. β and $\ln(E_0/E_c)$ were determined to be 1.25 and 8, respectively, by the curve fitting shown in Fig. 4. Then Kwas calculated to be 3.8×10^8 A/m² from the linear $F_{p_{max}}$ - H^* relationship shown in the inset of Fig. 2.

The above analysis based on flux-creep theory explains why F_p scales with $h = H/H^*$, not with H/H_{c2} . Similar treatment was done by Hettinger *et al.* [8] to explain the F_p scaling observed in YBCO thin films. They overlooked, however, the upward curvature of the U-J relation (inset of Fig. 1 of Ref. [8]), which leads to an underestimation of J_0 , a lower J_c than observed at 20 K, and an overestimation of V_d , the volume over which the driving force is determined. If V_d has the same field dependence as V_a in Ref. [8], a similar treatment to that used to obtain Eq. (5) in this study leads to $F_p \sim \sqrt{h}$ (1) $-\beta h^{2/3}$) in low h regime, which better explains their F_p data. They assumed the individually pinned vortices regime to explain the increase of F_p in low h regime $(h \le 0.15)$. In this regime, however, field independent J_c is expected and the regime threshold is not necessarily proportional to H^* [31], which is contradictory to their experimental results and interpretation. Civale et al. assumed a different form $J_0 \propto 1/[1+B/B_0(T)]$ in their analysis on the magnetization scaling in YBCO single crystals [32].

The major assumption in our analysis is that the $1/\sqrt{H}$ dependence of U_0 derived from the relation $U_0 \propto a_0$, which has been generally observed in Bi-oxide systems for ρ -T data taken above the irreversibility line (IL), is also the case in the discussion of J_c below IL. For the highly anisotropic Bi system the theory of Geshkenbein et al. [18] explains the temperature and field dependence of low U_0 values at high temperatures and low current densities. It is reasonable to think that their theory can also be applicable at lower temperatures and high current densities, since 2D-like J_c behavior was observed also at low temperatures. The stepwise flux penetration with many kinks is expected because the blocking layers between the superconducting CuO₂ layers have a lower superconducting order parameter [10], which is confirmed by the angular dependence of $J_c(H,\theta)$ determined only by the magnetic field component along the c direction, $J_c(H,\theta)$ $=J_{c\perp}(H\sin\theta)$ [6,11]. This suggests that the flux motion with formation of double kinks is plausible also below IL. In recent transport measurements in epitaxial YBCO films the 1/B dependence of U_0 is observed both above and below the irreversibility field [17], which gives a justification to our analysis.

The authors would like to thank J. T. Kucera for providing us with the preprint of Ref. [14] before publication. Thanks are also due to M. G. Karkuk and N. A. Fortune for a critical reading and to M. Soltome for technical assistance in sample preparation.

- [1] M. P. Maley, J. Appl. Phys. 70, 6189 (1991).
- [2] K. Sato et al., IEEE Trans. Magn. 27, 1231 (1991).
- [3] Y. Yeshurun et al., Cryogenics 29, 258 (1989).
- [4] K. Endo et al., Nature (London) 355, 327 (1992).

- [5] H. Yamasaki et al., J. Appl. Phys. 72, 2951 (1992).
- [6] H. Yamasaki *et al.*, IEEE Trans. Appl. Supercond. (to be published).
- [7] J. S. Satchell et al., Nature (London) 334, 331 (1988).
- [8] J. D. Hettinger *et al.*, Phys. Rev. Lett. **62**, 2044 (1989).
- [9] T. Nishizaki *et al.*, Physica (Amsterdam) **181C**, 223 (1991).
- [10] M. Tachiki and S. Takahashi, Solid State Commun. 70, 291 (1989); 72, 1083 (1989).
- [11] P. Schmitt, P. Kummeth, L. Schultz, and G. Saemann-Ischenko, Phys. Rev. Lett. 67, 267 (1991).
- [12] The irreversibility field H^* defined here is not the same as that determined by the magnetization measurement usually reported, because of different electric field critera. However, Xu and Suenaga reported that resistively defined H^* values have a temperature dependence comparable to magnetically determined H^* values [Y. Xu and M. Suenaga, Phys. Rev. B 43, 5516 (1991)].
- [13] T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. Lett. 61, 1662 (1988).
- [14] J. T. Kucera et al., Phys. Rev. B 46, 11004 (1992).
- [15] The apparent temperature independent linear $\log \rho 1/T$ plots can be explained by the linear temperature dependence of U_0 , $U_0 = K(1 - T/T_c)/\sqrt{H}$, which was observed in Bi-2212 thin films in low fields ($\mu_0 H \le 1$ T) [14]. The $1/\sqrt{H}$ dependence of the activation energy at a constant temperature was confirmed in Ref. [14].
- [16] J. Löhle et al., J. Appl. Phys. 72, 1030 (1992).
- [17] S. Zhu et al., Phys. Rev. B 46, 5576 (1992).
- [18] V. Geshkenbein *et al.*, Physica (Amsterdam) 162-164C, 239 (1989); see also a review in Ref. [14].
- [19] M. Tinkham, Phys. Rev. Lett. 61, 1658 (1988).
- [20] P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962); P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36, 39 (1964).
- [21] M. R. Beasley, R. Labusch, and W. W. Webb, Phys. Rev. 181, 682 (1969).
- [22] M. Tinkham, Introduction to Superconductivity (Mc-Graw-Hill, New York, 1975), p. 175.
- [23] D. O. Welch et al., Advances in Superconductivity II (Springer-Verlag, Tokyo, 1990), p. 655.
- [24] R. Griessen, Physica (Amsterdam) 172C, 441 (1991).
- [25] C. J. van der Beek et al., Physica (Amsterdam) 195C, 307 (1992).
- [26] When B = 1 T, $d \approx 50$ nm, and v_0 is estimated to be $10^5 10^{11}$ sec⁻¹ [22], which gives $25 \leq Bdv_0/E_c \leq 2.5 \times 10^7$. Since $Bdv_0/E_c \gg 1$ and d may be proportional to $a_0 \approx (\Phi_0/B)^{1/2}$, then $\ln(Bdv_0/E_c)$ is a slowly varying function of H.
- [27] E. J. Kramer, J. Appl. Phys. 44, 1360 (1973).
- [28] D. Dew-Hughes, Philos. Mag. B 55, 459 (1987).
- [29] L. Zhang, J. Z. Liu, and R. N. Shelton, Phys. Rev. B 45, 4978 (1992).
- [30] H. Ullmaier, Irreversible Properties of Type II Superconductors (Springer-Verlag, Berlin, 1975), p. 146.
- [31] L. Krusin-Elbaum, L. Civale, V. M. Vinokur, and F. Holtzberg, Phys. Rev. Lett. 69, 2280 (1992).
- [32] L. Civale et al., Phys. Rev. B 43, 13732 (1991).