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We propose a model of an anyon exciton consisting of a hole and several anyons, and apply it
to the spectroscopy of an incompressible quantum liquid. Practionalization of the electron charge
makes properties of such entities quite different from those of usual magnetoexcitons. The model
describes a number of properties established by few-particle simulations, including an abrupt change
in emission vs electron-hole asymmetry of the system. The attractive field of a hole may eliminate
the hard core constraint for anyons. The eÃect of exciton-magnetoroton coupling is discussed.

PACS numbers: 73.20.Dx, 05.30.—d, 78.66.—w

Phenomena in two-dimensional (2D) electron systems
related to the fractional quantum Hall effect (FQHE) [1,
2] and Wigner crystallization were originally discovered
by means of magnetotransport. Later on the formation
of an incompressible quantum liquid (IQL) [3], under-
lying the FQHE, and related phenomena have been in-
vestigated by optical experiments, which have become
a powerful tool in the field [4]. These findings stimu-
lated theoretical activity on the optical spectroscopy of
the FQHE [5—8]. It has been shown that a hidden symme-
try, which is inherent in 2D systems with charge symmet-
ric electron-hole interaction (V„=Vj„h = —V,h), results
in exact cancellation of the efrect of the electron back-
ground on optical spectra. Optical spectra of symmetric
systems are trivial, since they coincide with the spectra
of free magnetoexcitons, and are insensitive to electron
phase transitions. Therefore, the spectroscopy of charge-
asymmetric systems acquires a special importance. Gap
widths for IQLs determined from cusp strengths [5(a)] in
extrinsic optical emission spectra were reported [4(a)] For

such systems.
It is one of the most remarkable properties of IQLs that

their elementary excitations carry fractional charge [3],
and are anyons [9, 10], i.e. , obey fractional statistics [11,
12]. The theory [5(c),8] predicts that fractional charges
should manifest themselves by dramatic changes in the
position and the intensity of the emission band vs the
asymmetry parameter. The ratio h/l, where h is a dis-
tance between electron and hole confinement planes, and
l = (ch/eH) 1 is the magnetic length, may be chosen as
such a parameter. Numerical simulations for few-electron
systems are accessible only for small values of h/l & l.
For the opposite limit case of strongly asymmetric sys-
tems, h/l + 1, the approach based on the anyon con-
cept seems to be most promising. An exciton, appearing
against a background of an electron IQL, is a neutral en-
tity consisting of a valence hole and several anyons, e.g. , if
the filling factor v = 1/3, the charge of anyons e* = —e/3,
their statistical charge o. = —1/3 (for comparison, cr = 0
for bosons, and a = 1 for fermions) [9], and the num-
ber of anyons N = 3. If h )& l, the mean separation

between anyons in an exciton is about 6, which is larger
than the anyon size, l. Therefore, anyons are well de-
fined particles, anyon-anyon and anyon-hole interactions
follow a Coulomb law in the leading approximation, and
the Coulomb energy is small as compared to the IQL
gap width, A. When h & l, the exciton radius is about
3* = lv /', which is larger than / but comparable to it,
and the anyon-hole binding energy is even larger than A.
Only qualitative results may be expected from the anyon
exciton (AE) model in this limit. Nevertheless, we show
that they are quite encouraging. Recently there has been
a significant activity in the hierarchy theory of the FQHE
[13—15], anyon superconductivity [16], and mechanics of
anyons [17], and some experimental data have been dis-
cussed in these terms [18]. While the hierarchies provide
a level classification for free anyons, AEs may also give
insight into the efFect of an external (Coulomb) field and
the treatment of optical data.

We consider a model of an AE consisting of a hole and
two semions, anyons with e' = —e/2, n = —1/2 . If
the hard-core constraint [12, 14] is imposed, one should
choose cr = 3/2. For spin polarized IQLs e' = —e/q,
where q is odd. Our two anyon model is the simplest
one giving insight into the properties of the more re-
alistic models with q & 3. We assume that the mag-
netic field is strong enough, i.e. , the Coulomb energy
eo = e /el && bc'„co, is the cyclotron frequency, and
use dimensionalless variables scaled in units of e~, l, and
e. Such an AE, consisting of three particles, is described
by three quantum numbers. Since it is a neutral entity, a
two component momentum K may be ascribed to it [19].
Therefore, the internal motion in it is characterized by a
single quantum number, and the charge fractionalization
(CF) should result in the multiplicity of energy bands,
instead of the single band of a usual magnetoexciton.

In the strong Geld limit the preexponential factor in the
wave function of a positively (negatively) charged particle
is a polynomial in complex coordinate z (z), z = x+ iy.
We introduce for the two anyons the Jacobi coordinates
z = zi —z2 and ze ——(zi + z2)/2, and relate the anyon
center-of-mass coordinate, zo, to a hole coordinate, z3,
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by the usual exciton transformation. The new complex coordinates are z, ( = zp —zs, and Z = (zo + zs)/2, and the
wave functions of the three noninteracting particles with a momentum K, built from Halperin pseudo wave functions
[9], are

(zi z2 zs Ia) = B„(n)exp(iK R + i (p Y —pi/X)/2) exp( —(1/4) (p —r) )) IzI z" exp( —IzI /16).

(ni v In2) = 6„,„, I'(ni + n+ 1/2)
' '

8 21'(ni + a. + 1)

When m = Ini —n2I = odd, all (niIV~hIn2) = 0, which
ensures the correct interchange symmetry; only even n
have a physical meaning. For even m,

Vectors R, p, and r correspond to complex coordinates
Z, (, and z; K = z x K, z is a unit vector in the direction The first term is diagonal in n:
perpendicular to the confinement plane, —m is the dipole
moment of the exciton, and B„(a)is a normalization fac-
tor. The quantum number n & 0 is the relative angular
momentum of anyons. The Coulomb interaction may be
written as

V = V + V/„V = I/4r,
V..= -(1/2)(IS +r/2+»I '+ Ic

—r/2+uzi ')

( IP'rl ) = — Pl + +q I/q ~' '(P( + +&)&( + +&)]'~')
r2

q exp( q /2 —qh—)d (Kq)4~ + ad-l, m+ 1; —q 2)/dq
2 /'ni + n2+ m 2 (2)

C is the conHuent hypergeometric function. For o, =
—1/2 the integral (nIV In) diverges logarithmically for
n = 0. This is the price for using the oversimplified
model, 1V = 2. We use a cutoff V = 4(r~ + a2)i/2. For
the hard-core model, n = 3/2, and for an exotic exciton
built of two quasiholes and one electron, a = 1/2; hence,
all integrals are regular.

For K = 0 only diagonal matrix elements survive, and
Eqs. (1) and (2) give the energy spectrum by quadrature.
When ti = 0, Eq. (2) takes a simple form:

(»IV hl») = —a~, , g~/2(2/3)"'+ +'

where F is the hypergeometric function. Equation (3)
and its generalization for ti g 0 [diagonal matrix ele-
ments in Eq. (2)] give exact solutions of the three-particle
problem.

Figure 1 shows the effect of statistics on the distribu-
tion of electron density, d(p), around a hole in an AE
for K = n = 0. The functions d(p) for a free exciton,
d,„(p) = exp( —r /2)/2x, and an exciton in the presence
of an IQL (v = 1/3, h = 0), are also shown. In the last
case the excess density, dL(p), is plotted [8]. The most
striking property of dz, is a considerable increase in the
spread of the density as compared to d, , which is caused
by the Pauli exclusion principle. This property is repro-
duced by the anyon model, primary because of the in-
crease in the magnetic length, l' ) l. The curve d i/2(p)
is even in reasonable quantitative agreement with dz„a
realistic comparison may be done only for odd q. The
first excited state of an a = —1/2 exciton coincides with
the ground state of an n = 3/2 exciton. The latter curve,
having a Bat minimum at p = 0, highly resembles the dis-
tribution of the electronic density for an exciton against
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FIG. 1. Electron density, d(p), for the ground state of a
free magnetoexciton (ex), an exciton in the presence of the
IQL with v = 1/3 (L), and for anyon excitons with statistical
charges of anyons n = —1/2, 1/2, and 3/2; K = 0, h = 0. The
last curve also describes the first excited state for n = —1/2.

! the background of an IQL, v = 1/3 (Fig. 2, curve 3 in
Ref. [8]). This similarity in d(p) for the two lowest states
found by both simulations and for AEs strongly suggests
that when h is small the hard-core constraint for quasi-
particles [12,14] is violated in an exciton by the attractive
field of a hole.

There are several distinctive features of AEs caused
by CF. If K = 0, and h increases, CK„remain exact
eigenfunctions, but the level arrangement is changed; the
larger 6 is, the higher is the value of n for the ground
level, and the wider is the density distribution, d(p),
for it. The n = 0 and n = 2 levels interchange at
h„= 1.66 (for a = 1); at this point d(p) changes abruptly
from a; = —1/2 for a = 3/2 curve (Fig. 1). Since the
K dependence of diagonal matrix elements, (n V n), is
stronger the less n is, energy levels draw together at dif-
ferent values of K. At K = 0, nondiagonal elements of
V vanish, and the level rearrangement shows the pat-
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terns of the level crossing, while at K g 0 of the level
anticrossing, since V~h, mixes states, 4K„, with difFer-
ent n. This behavior is seen in Fig. 2 where dispersion
laws, s(K), are shown for h = 0 and h ) hc, . Dis-
persion is strongly suppressed as compared to a usual
exciton (Fig. 2), since in the K —+ oo limit only one
anyon moves away from the hole, while another remains
in a bound state and makes with the hole an ion (in
a conventional exciton all the electron charge is moved
away from the hole in the K ~ oo limit). If h = 0,
s'(K) = —~~/4 —1/8K for the lowest spectrum branch
in the K ~ oo limit [Fig. 2(a) . The K dependence is
the same as for magnetorotons [20, 21]. If h ) h„, dis-
persion in the ground state is even more suppressed [Fig.
2(b)]. Both the abrupt change in the ground state with
increasing h and the suppression of the dispersion are in
conformity with the patterns found by simulations [5, 8].

The level intersections at K = 0 have important impli-
cations for optical transitions. The matrix elements for
them are

M„(n) cc 4o„(zi, z2, zs~n)b(ri, rs, rs)dri dr2.

Here b'(ri, rq, rs) is a b'-shape function of ris and r2s hav-
ing a width about 1, in units of l. After the angular
integration over r, only the M„(n) with n = 0 survive.
Therefore, exciton transitions are allowed in the emission
at T = 0, i.e, , from the ground state, only if h ( h„. This
result is in agreement with numerical data [5(c),8] which
show that only weak transitions assisted by magnetoro-
tons (MR) are allowed at 6 )6„1.

The effect of the CF becomes even more spectacular
when the ground state density, d(p), is plotted for K g 0.
In Fig. 3 d(p) is shown along the symmetry line, p ~~

m,
for K = 0 and K = 2; it is symmetric with respect
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to p = —K for all K. At K = 1.59 (a = 1, h = 0)
a single humped distribution changes into a camelback
type. The right hand part, centered near p = 0, corre-
sponds to the ground state of the ion, and the left hand
part to a free anyon. When K increases, the separa-
tion between maxima approaches K/~e*~ = 2K, and the
electron density distribution in both wings approaches
d(p) = exp( —p /4)/8m. , which describes the shape of both
a free anyon and ion.

We have concentrated on the small h region, the least
favorable for the AE model, since the comparison with
numerical data is available only for it. All the more,
the success of the model is impressive. However, there
are two peculiarities of the exciton ground state found
by simulations [8] which the simple AE model does not
describe: (i) At h = 0 the function d(p) is of a single-
hump type and only feebly depends on K and (ii) at
h = h„ the minimum of s(K) shifts from K = 0 to
K~;„g 0, where K;„is close to the roton minimum [20].
We argue here that these facts unambiguously signal the
AE-MR coupling should be invoked. The importance
of it is implied by Fig. 3. The separation between an
anyon and ion increases with K, and an AE produces a
strong Coulomb field acting on the IQL, which is known
to become unstable when an external charge about e*
approaches it [22]. A simple idea that the AE creates a
virtual MR and makes a bound state with it describes
the behavior at h —0 very well. When h is small, the
dispersion of a bare AE is strong [Fig. 2(a)]. Therefore,
the momentum of an AE-MR complex is carried by the
MR, while the AE momentum K 0, which explains a
narrow distribution of d(p) [8]. When h increases, the
exciton dispersion curve flattens [Fig. 2(b)]. As a result,
the AE acquires a larger share in the total momentum,
K, and a new ground state with a broken symmetry and
the momentum K;„appears. In this state the shape of
d(p) found by simulations, Ref. [5(c)], is reminiscent of
the curve K = 2 (Fig. 3). AE-MR coupling manifests
itself also in the oscillatory behavior of dL(p) (Fig. 1)
(similarly to the screening of charged impurities [20, 22]).

In conclusion, we have proposed a model of anyon exci-
tons for the description of optical properties of IQLs. We
show that the model reflects different distinctive features
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FIG. 2. Dispersion law, e(K), for the three lowest spec-
trum branches; n = —1/2. When h increases, anticrossings
become narrower, and e(K) for the ground state flatter. The
curve for a free exciton (ex) is shifted to facilitate a compari-
son with the n = 0 curve.
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I I| . 3. Distribution of the electron density in the ground
state of an anyon exciton along the direction p J K.
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of excitons in the presence of an IQL as compared to
free magnetoexcitons, including broadening of the elec-
tron density, suppression of the exciton dispersion, and
an abrupt change of the emission spectrum with increas-
ing separation between electron and hole confinement
planes. The results of simulations and the predictions
of the AE model are compared, and the properties of ex-
citons, for which their coupling to magnetorotons is of
crucial importance, are established.
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