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Exact Resonating-Valence-Bond Ground State and Possibility of Superconductivity
in Repulsive Hubbard Models
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We generalize the exactly solvable Hubbard model with infinitely large on-site Coulomb repulsion
recently introduced by Brandt and Giesekus. We point out that the exact ground state can be
regarded as a resonating-valence-bond state, and argue that the state may exhibit superconductivity,
The existence of a phase with singlet-pair ordering is demonstrated in a simple model on a tree.
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Whether repulsive Coulomb interactions between itin-
erant electrons can lead to a superconductivity has been
an interesting unsolved problem [1]. Numerical works on
the standard single-band Hubbard model seem to indi-
cate the absence of superconducting phases, but, con-
sidering the remarkable "nonuniversal" behavior of the
Hubbard model, it is still possible that a class of mod-
els with specific band structure and Ailing factor exhibit
superconductivity. The aim of the present Letter is to
discuss a class of solvable Hubbard models, which might
provide the simplest examples in a "universality class" of
repulsive Hubbard models which exhibit superconductiv-
ity.

Recently Brandt and Giesekus [2] introduced an ex-
tended Hubbard model with infinitely large on-site
Coulomb repulsion on the decorated hypercubic lattice.
They were able to construct exact ground states for cer-
tain filling factors. Mielke [3] showed that the construc-
tion can be generalized to Hubbard models on a general
class of line graphs. In these works, it was argued that the
exact ground states have paramagnetic character. See [4]
for Strack's difFerent extensions.

In the present Letter, we further generalize the Brandt-
Giesekus model to a class of lattices with certain cell
structure. We then point out that the exact ground states
can be regarded as resonating-valence-bond (RVB) states
[5] with a certain sign rule characteristic of a system gov-
erned by electron (or hole) motion [6]. The standard pro-
cedure in valence-bond states allows one to express vari-
ous ground state expectation values as that in a stochas-
tic geometric system of random loops (with, however, not
necessarily positive statistical weights). We argue that a
possible percolation in the random loop system may cor-
respond to a superconductivity in the original electron
model. To make this idea more concrete, we study the
simplest version of the model on a tree, and show that
the ground state develops a singlet-pair ordering.

We define the model in its most generalized form [7].
Consider a Rnite lattice A, and assume that it can be
written as A = U,. '&C, , where each C, is called a celL A
site 2: c A may belong to several difFerent cells (Fig. 1).
In a cell C, , we assign a constant A & 0 to each x g(i}

C, . (When x belongs to more than one cell, A
' can

be chosen independently in each cell. ) We define the
hopping Hamiltonian within the cell as

H(C, ) =—

Here ct and c~ are the creation and annihilation op-
erators, respectively, of an electron at site x with spin
cr =T, J, . The electron number operators are defined as
n = ct c and n = n y+n g. The full Hamiltonian
of the model is

(2)

where the Gutzwiller projection operator P = Q &A(1—
n Tn~l) exactly takes into account the effect of the in-
Bnitely large on-site Coulomb repulsion.

The above class of models reduces to that considered
by Mielke [3] when each site belongs to exactly two cells,
two distinct cells share at most one site in common, and
all A~'l are identical. It reduces to the original class of
Brandt and Giesekus if one further restricts the lattice
to the decorated hypercubic lattice (the line graph of the
hypercubic lattice). It is expected that the inclusion of
model parameters and various lattice structures increases
the chance of finding nontrivial physics from the solvable

FIG. 1. A typical lattice in two dimensions. Each cell
contains 5 sites. We get an exact ground state when the
electron filling factor is equal to 1/3.
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models. In particular, allowing the neighboring cells to
share more than one site in common enhances the ten-
dency of the condensation of singlet electron pairs (va-
lence bonds), as can be seen from the geometric repre-
sentation (7) that we develop.

Following Brandt and Giesekus [2], we use the operator
identities Pc—t c„P= c„Pct for x g y, and P(l-
n )P = c Pct to rewrite the Hamiltonian (2) as

(CpI b» bt„ ICp) =
(~,y)cv (u,~)cv

h 4 ~

i=1
1)l~'I/2 —i

(6)

each cell in a way that any pair of bonds in V have no
sites in common. For valence-bond configurations U and
V', we have [6, 8]

n(VuV')

IC'cs) = P a,'. IC'o)

Nc

H=) ) a Pa,',
i =1 o.=T, J.

where a, = P e& A
'

c~ . Let us define(i)

Nc

(4)

provided that the graph V U V' consists only of closed
loops. Otherwise the quantity is vanishing. We have

v v'
decomposed the graph as V U V' = LI", 1 Ei where
each /, is a connected closed loop and IE, I

denotes the
number of bonds in /, . By using (5) and (6) we find

that the overlap of the ground state with itself can be
represented as

n(VuV')

where ICp) is the vacuum state. Using (Pa, ) = 0, we
find that the state (4) satisfies H I@as) = 0. Since the
Hamiltonian H is positive semidefinite [from the repre-
sentation (3)], this shows that ICas) is an exact ground
state of the model, provided that it is nonvanishing. By
using the overlap formula (6), we can prove [8] that the
state (4') is nonvanishing for a general class of models
with free boundary conditions [9]. See [2, 3, 8] for other
criteria for (4) to be nonvanishing.

Brandt and Giesekus conjectured that, in their model,
(4) is the unique ground state in the subspace with the
electron number Q eon~ fixed to 2N, . We believe the
same for the present generalization [10], but we have no
proof.

Note that the ground state (4) can be written as

Nc

IC'as) = P ). A*A„bt„ IC'o),
i=1 z)yGC,

(cas Ic'cs) = ) .A(v)A(v')
v, vi

1)l~'I/2 —i

where the sum is taken over valence-bond configurations
V and V' with the property that V U V' consists only
of closed loops. These loops are denoted as 8i with i =
1, 2, . . . , n(VU V'). We have set A(V) = P& „le&A».

The right-hand side of (7) defines a stochastic geomet-
ric system of random loops. Although the probabilistic
interpretation is not precise because of the oscillating sign
in the statistical weights, this analogy helps us to develop
pictures about the behavior of the system based on "clas-
sical" intuitions. A typical condensation phenomenon
one expects in a system of random loops is percolation,
which is characterized by the appearance of an infinitely
large loop. By using (6), one gets the representation

(C'asl b* b'. IC'cs)

where b „=c &c
I

+ c„&c &
is the creation operator of

the "valence bon " (singlet pair) on sites x and y. It is
remarkable that (5) has the form of the so-called RVB
state [5], in the sense that it is a superposition of various
states which are products of singlet pairs [11].Note that
all the basis states have nonnegative coefBcients in the
state (5). This is in contrast with the "standard" RVB
states found as the ground states of Heisenberg antiferro-
rnagnets on bipartite lattices, where the coeKcients have
oscillating signs [12] in order to satisfy the Marshall-Lieb-
Mattis sign rule [13]. In [6], it was argued from a general
consideration of a large-n version of the t-J model that
the natural relative sign for the ground state in a system
governed by electron (or hole) motion [14] should be as
in the above (5).

By identifying the ground state (4) as an RVB state
(5), we can make use of the standard random loop repre-
sentation technique [15] for valence-bond states. Let the
valence-bond configuration V be a set of N, bonds (i.e. ,

pairs of sites) constructed by choosing one bond from

= ) A(v)A(v')
V,V'

n(Vu

V'ufo',

y) ufu, v))
1)I&'I/2 —i

where V and V' are summed over the valence-bond con-
figurations with the property that VU V'U(2:, y) U (u, v)
consists only of closed loops, which are again denoted as

When neit. her (x, y) nor (u, v} is contained in a single
cell, the graph VUV'U(x, y)U(u, v) has a connected loop
which contains both the bonds (2:,y} and (u, v). This
observation suggests that the percolation in the random
loop system manifests itself as a long range order in the
singlet-pair correlation function (b»bt „),where we keep
2: and y (respectively, u and v) close to each other, and
separate two pairs by a large distance. The existence of
such an oK-diagonal order is usually expected to indicate
a superconductivity [16].

In order to check the above idea in a concrete situa-
tion, we shall consider a model on a tree. Although it
is possible to consider many variants of tree models [8],
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X„+g = A(p —1)(p —2)X„Y„(Y„+Z„)" s,

Y-+ = (p- 1)(p-2)(Y-)'(Y-+ Z-)" '
Z„+g = 2A (p —1)Y„(Y„+Z„)"

(9)

In terms of the normalized quantities x = X /Y„and
z„=Z„/Y, the recursion relation (9) becomes simple as
x„+q = A2:„and z +q = {2A /(p —2))(1+z„). The map
for x„ is trivial, and gives x„=A"xc. The asymptotic
behavior of z„as n —+ oo is given by z„~ z* = (I—
2A~/(p —2)) ~ for A & V (p —2)/2, and z„(2A2/(p—
2))" for A & g(p —2)/2. By noting that the singlet-pair
correlation function S„can be expressed in terms of the
normalized quantities as S„+q = (p —2)(p —3)(x„)~(z„+
1)" 4/((p —1)(p—2)(z„+1)" s+2A2(p —1)(z +1)" 2),
its asymptotic behavior as n —+ oo is obtained as

A " for 0 & A & Q(p —2)/2,
("~& ) for A & g(p —2)/2.

(10)

we discuss here the simplest one. The tree is constructed
recursively as follows. The cell in this model consists of
p sites with p & 5. We call one of them the origin of the
cell, and denote it as o. We define the hopping Hamilto-
nian (1) within the cell by setting A, = A & 0 and A~ = 1

for x j o. The first order tree consists of a single cell.
The origin of the cell is called the origin of the tree and
the remaining sites are called the boundary of the tree.
The nth order tree is constructed from a cell and (p —1)
copies of the (n —1)th order tree We identify each site
x g o of the cell with the origin of an (n —1)th order
tree. The boundary B„ofthe resulting tree is the union
of the boundaries of the (n —l)th order trees, and the
origin (again denoted as o) of the tree is that of the cell
(Fig. 2).

We consider the Hubbard model on the nth order tree
with the Hamiltonian (3). The state (4) is the exact
ground state when the electron number is equal to 2NC,
where N, is the total number of cells. In order to test
for the existence of electron pairing in the ground state
(4), we shall look at the off-diagonal correlation function
between a singlet pair including the origin of the tree and
the (sum of) singlet pairs at the boundary of the tree. It
is given by S„=(CGs] dldlb, ]4Gs) / (Ccs[C'Gs), where
2: is a site neighboring to the origin o of the tree (Fig. 2),
and d = Q cg c~~.

Let X„be the quantity defined by the right-hand side
of (7), but with the sum taken over V and V' on the nth
order tree such that the graph V U V' consists of usual
closed loops and an open path connecting a boundary
site and the origin. Similarly Y„and Z„are the sums
over V and V' where V U V' has only closed loops, but
the origin is empty in the former and is occupied in the
latter. A simple calculation shows that S„=(p —2)(p—
3)(X~ y) Y~ g(Y~ g + Z„g)" /(Y„+ Z„). It is also
easy to verify that these quantities satisfy the following
recursion relations:

FIG. 2. The third order tree with p = 4. Open circles
form the boundary B„.
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