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A new method for calculating the boundaries between two solid alloy phases has been developed. It is
first principles in that the only input is the atomic numbers of the constituents, and differs from previous
efforts in that no interaction potentials are introduced. It is used to calculate the miscibility gap in the

palladium-rhodium phase diagram.

PACS numbers: 64.70.Kb, 71.55.Ak

The phase diagram of a binary alloy system is a two-
dimensional plot that indicates the regions of concentra-
tion and temperature within which the alloy will exist in a
particular phase after it has been allowed to reach ther-
modynamic equilibrium. Such diagrams are very useful
in the development of special-purpose alloys, and it has
long been a goal of condensed matter theorists to develop
methods for calculating them from first principles. Of
course, most binary phase diagrams have been measured
and appear in handbooks, but a theoretical understanding
of the electronic and statistical features that cause the al-
loy to exist in a particular phase is of interest in itself and
is a first step in the understanding of ternary, quaternary,
and higher order phase diagrams that cannot be found
experimentally because of the overwhelming number of
measurements that would be required. In this paper we
describe a method for treating this problem that com-
bines the coherent potential approximation for the elec-
tronic states and the Monte Carlo method of statistical
mechanics in a novel way.

The coherent potential approximation (CPA) [1] has
proven itself to be an excellent predictor of such global
properties of metallic alloys as the delocalized one-
electron states, Fermi surfaces, residual resistivities, mag-
netic properties, etc. Detailed predictions made with this
theory for real alloy systems have been compared with
experiment in a number of papers, and these papers have
been reviewed in several articles [2-4]. The CPA gives
the electronic states for the random substitutional alloy in
which the probability for a particular type of atom ap-
pearing on a given lattice site is just the concentration of
that constituent in the alloy. The theory says nothing
about the partially ordered phase in which alloys can ex-
ist in certain regions of concentration and temperature,
not to mention the inhomogeneous mixture of two phases
which can be the structure of the alloy in other regions.

Efforts have been made to build on the successes of the
CPA, but to go beyond its limitations. The CPA pro-
duces a heat of mixing for an alloy in a given phase at
any concentration, a quantity that can be used in the
modeling of the thermodynamics of phase diagrams. The
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generalized perturbation method (GPM) [5] produces
effective pair, triplet, or higher order interaction poten-
tials that can be used in an Ising-like Hamiltonian for a
statistical-mechanical study of ordering in alloys. It is
obtained from a perturbation theory with the CPA as the
reference state. The Gyorffy-Stocks method (GSM) [6]
extends the CPA to obtain correlation functions that pre-
dict the occurrence of short-range order and long-range
order in alloys. These methods have been used with suc-
cess in the study of alloy properties of great interest, but
the accuracy with which they predict some phase boun-
daries can be improved upon.

The method proposed here is based on the observation
that the crux of the Monte Carlo (MC) method for ob-
taining the equilibrium distribution of atoms in an alloy is
a calculation of the energy required to replace an 4 atom
on a particular site with a B atom when the configuration
of atoms on the neighboring sites « is specified, §H,
=Fg(k) —E4(x). A random number z between zero
and one is generated, and the atoms are interchanged on
that site if z <exp(—8H,/2kgT). Conventionally, the
interchange energies §H, are obtained from an Ising-like
Hamiltonian using effective interaction potentials. We
use another approach based on the embedded-cluster
method (ECM) [7].

In the ECM, the electronic structure is calculated for
an alloy with a specified arrangement of atoms on the
atomic sites in the first few nearest-neighbor shells sur-
rounding the central site. The effective scatterer calculat-
ed with the ordinary CPA for a particular concentration
is placed on all the other sites. Calculations of the total
energy for two such systems that differ only in that an A4
atom on the central site is replaced by a B atom leads to a
direct evaluation of the §H,. For lack of a better name,
we call this new approach the embedded-cluster Monte
Carlo method (ECMC).

Palladium-rhodium alloys have the face centered cubic
crystal structure for all concentrations and temperatures
below their melting points. CPA calculations were car-
ried out with a scalar-relativistic version of the Kor-
ringa-Kohn-Rostoker (KKR) CPA method [8] for three
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FIG. 1. The lattice constants of palladium-rhodium alloys as
a function of the atomic fraction of rhodium. The solid circles
are the calculations based on a scalar-relativistic version of the
KKR CPA. The solid squares are calculations done with a non-
relativistic version of the KKR CPA. The open circles are the
experimental measurements of Shield and Williams [9].

alloys with rhodium concentrations of 25%, 50%, and
75%. Six lattice constants were used with each concen-
tration, for a total of eighteen self-consistent CPA calcu-
lations. From a plot of the total energies as a function of
lattice constant, the equilibrium lattice constants can be
found very accurately. Band theory calculations were
used to obtain the lattice constants of pure palladium and
rhodium. These lattice constants are compared with ex-
periment in Fig. 1. The excellent agreement between
theory and experiment is another example of the success
that the CPA has in predicting global properties of alloys.

The clusters in our ECM calculations consist of the
central site and its twelve nearest neighbors. There are
4096 configurations for the atoms in the nearest-neighbor
shell, but, because of symmetry, it is only necessary to
carry out calculations on 144 of them. Since it is re-
quired to do each calculation with an 4 atom and a B
atom on the central site, 288 cluster calculations were
done. The 144 different interchange energies, 6H,, for
the 50% alloy are shown in Fig. 2. They are the dif-
ference between the total energy of the crystal with an A4
atom and a B atom on the central site and a given
configuration kx of atoms on the nearest-neighbor shell.
We calculated these energies within the frozen potential
approximation, which means that only the sum of one-
electron eigenvalues was used. The amount that the §H,
for the 25% and 75% alloys differs from the §H, for the
50% alloy is quite small (note the change in scale in Fig.
2) but it affects the phase boundary in an important way.
The 8H, for any concentration of interest can be found
by interpolation.

The reason that the §H, are plotted as a function of
the number of rhodium atoms in the nearest-neighbor
shell, n, is that they are a linear function of n., for the
frequently studied Ising model with only nearest-neighbor
pair interactions. The inclusion of longer-range pair in-
teractions will simply broaden the line. By comparison
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FIG. 2. The X’s are the interchange energies for a 50%
palladium-rhodium alloy plotted as a function of the number of
rhodium atoms in the nearest-neighbor shell. The open circles
are the interchange energies for the 25% alloy minus those for
the 50% alloy, the values being read from the right-hand scale.
The open squares are the interchange energies for the 75% alloy
minus those for the 50% alloy, the values being read from the
right-hand scale.

with the straight line shown in Fig. 2, it can be seen that
the 6H, calculated in the ECMC are not symmetrical
about n;, =6. The other obvious point is that there are
several values of §H, for a given n., because they depend
on the precise configuration x.

These 6H, were used in a grand canonical Monte Car-
lo calculation on a sample made up of 55296 atoms to
obtain the phase boundary that is compared with experi-
ment [9] in Fig. 3. The Monte Carlo calculation is of a
standard form [10], although the asymmetry of the §H,
introduces some difficulties that are not considered in the
literature. The slope of the §H, vs n, curve has the gen-
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FIG. 3. The phase boundary for the palladium-rhodium alloy
system calculated with the ECMC is shown by the solid line,
which is a cubic spline fit to the Monte Carlo results indicated
by open circles. The temperatures at which four samples with
the indicated concentrations were observed to undergo transi-
tions to the two-phase region by Shield and Williams [9] are
shown by the diamond-shaped points. The light dash-dotted
line is the phase boundary calculated with interchange energies
for the 50% alloy.
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eral form that in a magnetic analogy would correspond to
a ferromagnetic interaction. In an alloy, this means that
the constituent atoms prefer to be surrounded with atoms
of their own kind. For this reason, the shape of the
boundary shown in Fig. 3, called a miscibility gap, was
expected. Above the boundary, the system exists as a
homogeneous substitutional alloy, while within the boun-
dary, it exists as a mixture of two phases. One phase is a
palladium-rich substitutional alloy and the other is rhodi-
um rich, the concentrations for a given temperature being
the boundary points on the miscibility gap. The amounts
of the two phases depend on the concentration of the al-
loy, and are given by the lever rule. The highest point on
the calculated miscibility gap has a temperature 7, of
1220 K, which can be compared with the highest trans-
formation temperature observed experimentally, 1190 K.

If the concentration dependence of the interchange en-
ergies is ignored and the phase boundary is calculated
with the 8H, for the 50% alloy shown in Fig. 2, the
consequence of the asymmetry in these parameters when
viewed as a function of n,y is that the highest point on the
miscibility gap is on the palladium-rich side, as can be
seen from Fig. 3. When the concentration dependence of
the 8H, is included in the calculation, the peak of the
miscibility gap is on the rhodium-rich side, which agrees
with the experimental determinations [9]. The primary
reason for the ultimate shape of the curve is the change in
the lattice parameters with concentration shown in Fig. 1.
The excellent agreement between the ECMC theory and
experiment is clear from Fig. 3. The meaning of the
asymmetry in the miscibility gap is that, in the two-phase
region, the concentration of rhodium in the palladium-
rich grains is greater than the concentration of palladium
in the rhodium-rich grains.

Several other calculations of this miscibility gap have
been reported in the literature. The Gyorffy-Stocks
method [6] predicts a boundary that has its maximum on
the palladium-rich side, and its highest point at a 7, that
is about 330 K higher than ours, which makes it 360 K
higher than experiment. Calculations using effective pair
interactions obtained with the generalized perturbation
method [5] give a miscibility gap with a maximum near
30% rhodium, and a 7. about 380 K above ours [11]. A
theory based on the heat of mixing from the CPA and the
ideal entropy of mixing produces a curve that has a pecu-
liar shape [11]. If the one point that appears to be a mis-
take is ignored, it gives a T, that is about 160 K higher
than ours. Finally, the Conolly-Williams method [12],
which obtains interaction potentials by fitting to calculat-
ed total energies of several ordered structures, gives a
rather symmetrical miscibility gap with a 7, about 130 K
higher than ours [13].

The present authors have published a description of the
ECMC with some preliminary calculations [14], and also
a calculation of the palladium-rhodium phase boundary
based on a nonrelativistic version of the KKR CPA and

ECM [15]. It can be seen from Fig. 1 that the quality of
the total energy calculations and hence the predicted lat-
tice constants is improved considerably in the scalar-
relativistic case. The gross features of the miscibility gap
were not changed so much, but the earlier calculations
predicted a miscibility gap with its peak on the palla-
dium-rich side. The reason for this is that, although the
self-consistent KKR CPA calculations were done for
25%, 50%, and 75% alloys, the lattice constants were all
kept fixed at the value for the 50% alloy shown in Fig. 1.
The 7. obtained in these nonrelativistic calculations is
about 40 K higher than the present one. A calculation of
the miscibility gap for the copper-nickel alloy system was
also reported in the earlier paper [15]. It is qualitatively
correct, but the experimental situation for that alloy is
not clear at the present time.

There are many reasons for incorporating the concen-
tration dependence of the interchange energies in calcula-
tions of this sort. An obvious one is it guarantees that the
correct average lattice constants are used in the calcula-
tion of the §H,. This is the most fundamental manifesta-
tion of the atomic size effect and can be important, as
was demonstrated in the previous paragraph. Another
reason is that the change with concentration of the Fermi
energy, which is the chemical potential for the electrons,
must be included.

For those who are accustomed to considering pairwise
atomic interactions, the calculations reported here include
certain of these up to fourth nearest-neighbor distances.
For those who consider triplet, quadruplet, . . ., interac-
tions, these calculations include up to dodecatuplets. A
better way of looking at this theory is that it incorporates
a different point of view concerning the features of the
environment of an atom in an alloy that are important in
determining the magnitude of the interchange energy. It
should also be emphasized that the atomic interactions
between the central atom and the atoms outside of the
nearest-neighbor shell are not being ignored. They are
treated statistically within the coherent potential approxi-
mation, which appears to do this successfully for the al-
loys we have treated so far.

The excellent agreement between our predicted misci-
bility gap and the experimental measurements gives us
considerable confidence that we are proceeding in a
promising direction. It can be pointed out that the palla-
dium-rhodium system is a particularly simple one. It is
one of the few alloy systems that does not show polymor-
phism, and there is relatively little transfer of charge or
size disparity between the atoms. At the same time, there
are many improvements that could be made in our
ECMC to cope with more complicated systems.

The KKR CPA and ECM calculations described here
make use of the muffin-tin approximation for the one-
electron potentials. Although this will have little effect
on a palladium-rhodium calculation, it would be desirable
to remove this restriction in future calculations. Another
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extension of the theory that is relatively simple to imple-
ment is to use spin polarization to treat alloys that have
magnetic phases. The frozen-potential approximation
can be eliminated by going to the Harris approximation
[16], and then to a calculation of the energy with no
simplification beyond the local density approximation.
These extensions are developmental in nature, and will
not make the calculations more time consuming.

The inclusion of more nearest-neighbor shells in the
embedded-cluster and Monte Carlo calculations is
straightforward, and there is no difficulty in principal in
allowing atoms in the embedded cluster to move off their
average lattice sites to treat size effects. These improve-
ments will also allow the effects of charge transfer to be
included for the systems in which it is important, but they
do increase the amount of computer time required for the
calculations.

ECMC calculations are not computer intensive on the
scale of some of the first-principles molecular dynamics
calculations that are being done today, but they do strain
the limits of conventional vectorized supercomputers. It
would have been quite difficult to finish the calculations
described here so soon without the availability of a mas-
sively parallel supercomputer.
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complex-lattice, scalar-relativistic, KKR CPA code on
which our ECM was based.
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