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Kinetics of Systems with Continuous Symmetry under the Effect of an External Field
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Universality in the kinetics of systems with O(N) continuous symmetry, under inliuence of an external
time-dependent field, is studied. The exponents that characterize the process are obtained, showing that
they are independent of N, for Ã ~ 2. We also get analytical expressions for the time dependence of the
order parameter (magnetization) in the presence of small fields, in the limit N ~. Our results show
that universality goes beyond the value of the exponents. For small fields, the full dynamical evolution of
the order parameter is universal. Similar universality is expected for arbitrary N. Agreement with nu-
merical solutions of the basic nonlinear equations is excellent.

PACS numbers: 64.60.Cn, 64.60.My, 75.60.—d, 82.20.Mj

Universality is a concept that has always attracted the
interest of physicists. The existence, in some physical
processes, of parameters and functions that are indepen-
dent of microscopic details has provided an area of sus-
tained activity over more than thirty years. Typical ex-
amples are critical phenomena, where the correlation
length gro~s to infinity, and kinetics of first-order phase
transitions [1,2], where the system is characterized by the
mean domain size that grows in time. Similarly, we can
expect universality of some kind in any process where the
characteristic length of the system becomes much larger
than the range of interaction. An example of a process of
this type is a magnetic system (below T, ) evolving under
the eAect of an external field opposed to the magnetiza-
tion. The classical view of this dynamical process indi-
cates that the system separates into domains, each one ro-
tating its magnetization independently. When the field

amplitude tends to zero, the domain size diverges; in this
Letter, we analytically determine the universal features of
this dynamical process. A proposal of universality for
such a system was made by Rao, Krishnamurthy, and
Pandit in [3], where the particular case of the hysteresis
loop induced by a sinusoidal field, H(t) =HosinOt, was
studied. When Ho and 0 are decreased (taking the limit
0 0 first, in order to guarantee that the system com-
pletes the loop) the total area W (energy dissipation) of
the hysteresis loop also vanishes; so it was proposed [31
that

dimensionality D and the order parameter dimensionality
N, for N ~ 2. Once the role of the instability is de-
scribed, we use Suzuki's ideas for systems near an insta-
bility point [4] to analytically obtain a closed expression
for dM(t)/dt in terms of M(t) and H(t) [for H(t) «1].
An important consequence of the calculation is that the
universality is not just for the exponents a, p, tl, but the
full equation for dM(t)/dt is universal. This equation is
independent of the particular form of the free energy and
depends only on H(t) and on the equilibrium value of the
order parameter. The analytic results are compared with
numerical calculations; an excellent agreement is found
even for fields that are not very small. Our analysis is
performed in the limit of large dimensionality of the or-
der parameter, N ~, but it provides strong support for
similar universal features [possibly an N-dependent equa-
tion for M(t)l for arbitrary N. The universality of the
exponents is solely due to the existence of a Goldstone
mode and should be valid for all N ~ 2.

The framework used in theoretical and computational
studies for various problems in kinetics of phase ordering
and phase separation is the Langevin equation; we also
begin our analysis with it for an ¹ omponent order pa-
rameter N in a D-dimensional space x, in which the
thermal noise satisfies a fluctuation-dissipation relation
for a system in equilibrium at temperature P . We re-
strict ourselves to systems with a nonconserved order pa-
rameter. A large number of studies have used the Lan-
dau-Ginzburg-Wilson free-energy functional

F= d x —(V 4) + —4 + (@ ) —H(t). @
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lim lim 8'~H0A~, (I)
Ht) 00 0

with a and P as universal exponents. Similar arguments
can be applied in general to a system below T, evolving
under the eAect of a variety of external fields opposed to (3)
the magnetization, including a step-function field. An- where we have included the coupling term to a time-
other universal exponent g is also relevant: If one defines dependent external field [H(t)]; =H(t)8;'~. We assume
t~ as the time when the magnetization (order parameter) that for t ~ (), H(t) ~ 0 and (+t(t)) —M(t) = —Mo,
changes sign, then where Mp is the absolute value of the equilibrium magne-

llll f] ~ 0 (2) tization. A simplified picture of the process that we are
Ho 0 interested in can be obtained by imagining that our sys-

In this Letter we first analyze the instability induced by tern is a ball inside a Mexican hat (for N =2). For t & 0
the external field in a simplified one-mode model. We the system is at (or near to) equilibrium, but after H(t)
get, through a simple linear analysis, the exponents a, P, changes sign, at t =0, the absolute minimum of the free
and g, showing that they are independent of the spatial energy is placed at the opposite side of the hat. We see
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that during the very early time the ball rapidly (exponen-
tially) finds equilibrium in the direction parallel to the
field, reaching a saddle point. At this point the system is
unstable in the perpendicular direction, with

—yp(t) —=
rl' (e)

saddle point

gy

=—[g (t)M(t)+H(t)],
dt 2

g (t) =[M,' M—'(t)+S, S—(t)]K[M,S],
H(t)
Mo

to lowest order in H(t). Here f(N) is the bulk part of
the free-energy density. This instability is common to all
systems with N ~ 2 and is the general consequence of the
ground state degeneracy that makes the Goldstone mode
unstable in the presence of any nonzero field (opposed to
the magnetization). It is also independent of the particu-
lar form of the free energy (so long as the ground state is
degenerate over the surface of an N-dimensional hyper-
sphere of radius Mp).

Linear analysis of this simple model shows that the in-
stability induces, during the very early time, exponential
growth of the form

M (t ) = —Mp+ 6 exp dt '
yp(t ') (5)

where 8 is a small parameter related to the distance to
the (unstable) equilibrium point or to a mechanism that
destroys the (unstable) equilibrium. In our case, assum-
ing perfect alignment of the field with respect to the mag-
netization, 6' is related both to the temperature and the
field. A standard way to estimate t i in Eq. (2) is to re-
late it to the time when linear analysis becomes inval-
id (Sexp[fpdt'yp(t')] = 1). If at early times, H(t)
hatt:ht" ', then ti tx ( —Mph 'In6) 't". This result shows
that @=1/n and that, if 8 depends on h, there are also
logarithmic corrections. Also,

W=„M(t)dH(t)
—2Mphtat t ex; M &2" it"h t"( —In/) tn

For example, for an oscillating square wave pulsed field
of period Tp, we have n=1, obtaining a=1, P=O, and
rt =1 (note that in the limit 0 =2tt/Tp 0 this parame-
ter is irrelevant). For a sinusoidal field (for 0 0, in the
region of interest HpsinQt=HpQt), n=2 and a=P
=9=2

The physical picture just presented is a "mean field"
one in the sense that spatial fluctuations in the free ener-
gy are suppressed. In practice, for our case, spatial and
temperature-induced fluctuations are essential; thus it is
important to verify the previous results in a more rigorous
way. Suzuki has proposed a singular perturbation meth-
od [4] to study systems near an instability point. We ap-
ply his ideas and their generalization to systems with
infinite modes [5,6] to our problem.

An analytical treatment of the Langevin equation for
arbitrary N is extremely difficult, but the previous picture
suggests that the N dependence (if any) should be small.
An important simplification can be'performed in the limit
N ~ where a closed set of equations is available [7].
After properly scaling the units of time, length, and ener-
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S(t) =KD dqqo 'C~(q, t),
t)C~(q, t)

Bt
= e —[q ' —g~(t) l C&(q, t ), (9)

where C~(q, t) is the Fourier transform of the transverse
correlation function. Equation (7) corresponds to the
general expression for an arbitrary free energy. K[M(t),
S(t)] can be a complicated function that vanishes at the
metastable or unstable extrema of the free energy, but at
the (degenerate) absolute minima, it is the expression in

the square brackets that vanishes [for the free energy (3),
K(M, S) =1]. In these equations, a large-q cutoA' A is

introduced, t. is the scaled temperature (t.'=u/Ptr ), Sp
is the equilibrium value of S(t), and KD is proportional to
the surface area of the unit hypersphere in D-dimensional
space. These equations are the starting point of our
analysis. The main ingredient lost in the N=~ model
compared with real systems (N=2, N=3) is the ex-
istence of topological defects. Those are important in or-
dering dynamics [6]; in our problem these will be impor-
tant for late times but should not modify the main con-
clusions of our analysis.

The similarity between Eqs. (6)-(9) and the mean-
field-like picture is clear. When H(t) changes sign, after
a short time, dM(t)/dt =0, g~(t) = H(t)/Mp, and

Eq. (9) becomes unstable [note that the Goldstone mode

q =0 in Eq. (9) has precisely the exponential growth pre-
dicted by the "mean field" picture] and Suzuki's ap-
proach should be applicable. A technical problem, which
makes a singular perturbation analysis difficult, is that
both yp(t) and 6 in Eq. (5) are field dependent. It is con-
venient to separate these two eAects by introducing a
change of variables which makes the argument of the ex-
ponential in Eq. (5) independent of the amplitude of the
external field (to lowest order). Let us assume that near
t =0, f dt H(t) = ht", then it is clear that the following
transformation is useful:

r =h ' "t, F(r) =h ' "H(t), Q'=h ' "q' (10)

a(. ) =h ""g (t), c(Q, .) =h-""C.(q, t).
After such a transformation, the parameter 6' is easily

recognized as 8 = t. h (D —2)/2n (the initial condition
could also depend on this parameter). If the particular
form of F(r ) is known, it is possible to perform a singu-
lar perturbation analysis (in 6) in order to get an asymp-
totic solution for r))1 when 6 0 [8]. Instead, we per-
form a more general analysis for an arbitrary field F(r ),
treating together two types of physical situations: (a) At
time t =0 the system is in equilibrium [with M(0)
= —Mpc(QO) =t h ~t "/Q ] and then a field is

turned on. (b) There is present (since time t = —~) a
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If t 1'

dQQ exp —
Q z+J~ dz "a(z")

g
dz'a(z')exp Q z' —

&
dz "a(z")

periodic field H(t+ Tp) =H(t) and the system undergoes a hysteresis cycle. In each of the two cases, it is of course the
time dependence of H(t) near t =0 that determines the exponent n in the transformation Eqs. (10) and (11).

The strategy of the general analysis has three steps. First, we formally integrate the equation for c(Q, z). And, we
integrate c(Q, z) to obtain S(z) [9]:

&A/h '/"S(.) =Sp+rcD~h'D "t2"-~
Jp

where ip is either 0 or —~ depending on whether the
case being considered is (a) or (b). Second, we formally
get the asymptotic behavior for z» I and fpdz'a(z')
)&1 but with 8 0 [9]. The key idea is to realize that
the points in the plane (z', Q) that most contribute to the
double integral are those with z'=0 (the fastest ex-
ponential growth) and Q =0 (the most unstable mode).
It is enough, for our purpose, to construct a difTerential
equation for S(z) for z)) 1; we obtain [9,10]

!
Relating the constants C of the two approaches we get r ~

in terms of h. In particular, for a step-function field
(n = I ) starting from equilibrium,

8M
rc,r [(D —2)/2]

(i 6)

as(. )
d7

= [a (z ) —f(.) ] [S(.) —S.], (i 2)
or, substituting D =3, i~ =ht~, and neglecting the second
term in the exponential,

f;,dz'F(z')
M(z) =Mptanh —g(z)

2Mp
(i 3)

where g(zi) =0 and g(z) satisfies the differential equa-
tion

dg(z) 1 f;,dz'F(z')= ——f(.) tanh
dr 2 2Mp

—g(. ) . (i4)

This equation is easily solved iteratively. The only un-
known quantity is zi which is defined from M(zl) =0.
Following Suzuki's approach, i 1 can be uniquely fixed by
matching this asymptotic solution with the linear analysis
in the parameter B. Both the linear approximation (for
z »1) and Eq. (13) (for z « zi) yield the same form:

M(, )=-M +C, -'"-""'"'.,p
"d. F"

4 p

(is)

with f(z) =(D —2+2jp)/2z+O(z ), where j p can be
0 or 1 depending on the type of external field [10]. Note
that in deriving this equation we did not make use of the
explicit form of the free energy. This information is con-
tained in the parameter a(z) [see Eqs. (7), (10), and
(i i)].

Finally, in the third step, we construct a closed equa-
tion for M(z) solving the system of Eqs. (6), (7), and
(12) in the limit h 0. In this limit Eq. (7), for an arbi-
trary free energy, reduces to Mp —M (z) =S(z) Sp
+O(h't"). This fact shows that the final result will be
universal, independent of the form of the free energy (as
long as the system is below T, ). The physical reason un-

derlying universality is that, as h 0, the characteristic
length of the process diverges and fluctuations aAecting
M(t) inside each domain partially cancel. As a result, in

the renormalization group sense, the system approaches a
fixed point, the zero-temperature fixed point. The univer-
sal solution is [9]

t 1
=h 'Mpln

16trJzMp

eWi

which verifies the results of the one-mode model.
For a sawtooth (or sinusoidal) periodic field (h =HpQ,

n =2) we get

3/2

t. h (D 2)]4 8Mp

xDr(D/2) J2x
exp — —2g(1)

2Mp

(i7)
leading to t 1

=h ' [2Mpln(16tr 42M /eh ' )] '

Equations (13) and (14) and (16) and (17) are the
central result of this Letter [note that one can also get
universal expressions for C(Q, z) and a(z)]. We have
also performed a direct numerical integration of Eqs.
(6)-(9) with D =3, for a step-function field and a period-
ic sawtooth field, in order to test Eqs. (16) and (17). The
q integral was cut in two asymmetric pieces [partially
taking into account the asymmetric behavior of C(q, t)]
and each piece integrated with 16- or 32-point Gaussian
quadratures. The resulting set of coupled diA'erential
equations was solved using a fourth-order Runge-Kutta
algorithm. The results for the step-function field are
shown in Fig. 1. Here h =Hp, the step-function jump in
the field. The main figure shows a comparison (in a log-
log plot) for t~/Mp vs Hp, the exponent ti is directly
obtained from the slope of the lines. The inset shows
t |Hp/Mp vs Hp. The logarithmic correction is obtained
from the slopes in the inset; we see that both numerical
and analytical data are approaching the same slope for
Hp 0.

For the periodic sawtooth field the numerical integra-
tion was iterated until a perfect periodic loop was ob-
tained. Also the period of the field H(t) was increased
until no dependence on it remained (typically Tp
=20h 't ). In Fig. 2, the results for the area Wof the
hysteresis loop are shown. The theoretical results were
obtained from the magnetization profile given by Eqs.
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(13), (14), and (17). Again agreement is excellent and
increasingly better as h 0.

We are aware of a recent qualitative calculation [I I]
which gives similar exponents (also with logarithmic
corrections) for the hysteresis loop of a O(N =~) sys-
tem. We have performed a more rigorous and fully ana-
lytic derivation, which allows us to recognize the underly-
ing reasons for the particular exponents obtained and ar-
gue that the same values should remain for any system
with N ~ 2 (in agreement with preliminary simulations
for a three-dimensional system with N =2 and N = 3
[12]). Moreover the fully analytic calculation permits us
to recognize that universality is stronger than expected
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FIG. 2. Log-log plot of the area of the hysteresis loop for a

periodic sawtooth field vs h (see text). The symbols are the
same as in Fig. 1. The inset shows

~
W~/h 't vs h (on a logarith-

mic scale), and displays the logarithmic corrections to the
power law behavior of W [see Eq. (I)].

HO

FIG. 1. Log-log plot of t~/Mp vs Hp [defined in Eq. (2)] for
r = —2 and r = —10. The symbols correspond to the numerical
calculation (a, r = —10; 0, r = —2) and the solid lines to the
analytical model [Eqs. (13), (14), and (16)]. The inset shows
t ~H p/Mp vs Hp (on a logarithmic scale), which displays the log-
arithmic corrections to the power law behavior of t].

and is not restricted to the exponents.
In summary, we have applied for the first time Suzuki's

ideas to a system with infinite modes and spatial as well

as thermal fluctuations. The analytic results were used to
investigate universality in a system with continuous sym-
metry under the effect of an external field (sinusoidal and
step-function periodic fields were considered). We used
simple arguments to demonstrate the universality of the
exponents defined in Eqs. (I) and (2) and to derive their
universal values. We also analytically calculated M(t)
for the limit N ~. We showed that the full dynamical
process is dominated by the zero-temperature fixed point
and thus M (t) is universal. For the same physical
reasons we expect the identical universality for any N
~ 2. Experimental measurements in the limit h 0
would be interesting.
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