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Surface Diffusion Currents and the Universality Classes of Growth
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We show, through simulations of a variety of one- and two-dimensional solid-on-solid models, that
nonequilibrium surface diffusion processes in the presence of a deposition flux are generically character-
ized by a nonvanishing inclination-dependent mass current along the surface. The current stabilizes the
surface, leading to Edwards-Wilkinson scaling for the surface fluctuations, if it is a decreasing function
of inclination, but induces a growth instability otherwise. Both types of behavior generally occur for the
same system at different surface orientations.
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A number of recent theoretical studies [1-7] were de-
voted to deposition processes in which surface diffusion
constitutes the dominant relaxation mechanism. This
work was motivated both by the practical interest in

deposition techniques such as molecular beam epitaxy
(MBE) [8], and by the progress in our general under-
standing of interfacial fluctuations in growth processes
[9,10] which followed the seminal work of Kardar, Parisi,
and Zhang (KPZ) [11]. While the KPZ theory applies
to situations such as the field induced motion of an inter-
face in the Ising model at low temperatures [9], the mi-

croscopic process envisioned in studies of "ideal M BE '

[4] consists of atoms impinging randomly onto the grow-
ing surface, and then diftusing to highly coordinated sites
where they are incorporated into the lattice. The key as-
sumptions of ideal MBE models are the eA'ective absence,
on the scales of interest, of (i) desorption and (ii) vacan-
cies and overhangs; (i) implies that the surface relaxation
dynamics conserves the mass of the growing film, while
(ii) translates mass conservation into volume conserva-
tion. Consequently, the large scale fluctuations of the
surface can be described by a coarse-grained, noisy con-
tinuity equation [1,2]

8 h= —v J+g,
Bt

where h(x, t) is the height of the surface above some d-
dimensional reference plane, J is a function of the deriva-
tives of h, and the Gaussian white noise term ri(x, t) rep-
resents the deposition flux, with (tl) =(g ) —(q) =F
Violation of either of the two assumptions stated above
introduces a term proportional to (Vh) into (I) and
places the model into the KPZ universality class [12].

Here the term unil. ersah'ty class refers to the dynamic
scaling form of the height fluctuations [13], which can
be written, using the Fourier amplitudes S(~k~, t)
=(~h(k, t)~ ) of h, as S(k, t) =k + ~ f(k't), where

f(0) =0 and f(x ~) =const for a surface which is flat
(h=0) at time t =0. The universality class of a growth
process is characterized [9] by the values of the roughness

(2)JNF(Vh) =j(m, e)e.
We propose a unified picture of nonequilibrium surface
diflusion based on the possible generic shapes of the func-
tion j(m) (the dependence on e will be omitted in most
of what follows). Moreover, we demonstrate that the
difl'usion current can be measured in simulations of depo-
sition onto tilted substrates, allowing us to detect its pres-
ence even in cases where its magnitude is too small to

exponent g and the dynamic exponent z. For height con-
serving processes described by (I ) the scaling relation
z =d+2( holds [1,4, 5]. Numerically, the exponents are
often estimated from the scaling of the surface width

g (t) =gkS(k, t) —t ~, where P=g/z [3,7].
Scaling arguments [2] and renormalization group

(RG) techniques [4,5] aimed at predicting the exponents

g and z start from a gradient expansion of the current J
in (1). The central issue, then, is to understand the form
of the current that applies to a given microscopic situa-
tion. In Mullins' theory of equilibrium surface diAusion
[14] the current is the gradient of a local chemical poten-
tial p(x, t) which, to leading order in h, is proportional to
the curvature of the surface. This implies V J—V (V2h)
and leads to the prediction z =4, g=(4 —d)/2 [1]. It has
been suggested [2,4] that growth conditions contribute a
nonequilibrium term ONE —(Vh) to the chemical poten-
tial. This is a relevant term in the RG sense which
changes the dynamic exponent to z =(8+d)/3 for d «4
[2,4, 5].

In this Letter we show that nonequilibrium conditions
generically generate a surface diffusion current JN~
which, to leading order in a gradient expansion, is a func-
tion of the local surface inclination Vh, and therefore
cannot be derived from a generalized chemical potential
pNE(Vh, V h, . . . ). The microscopic origin of this current
lies in the fact that tilting the surface, h h+ x. m,
breaks the reflection symmetry in the direction of the tilt
and consequently induces a preference for particles to
move either uphill or downhill. Writing Vh =me with

~e~ =1 have

1993 The American Physical Society 3271



VOLUME 70, NUMBER 21 PHYSICAL REVIEW LETTERS 24 MAY 1993

influence the scaling properties of the surface on numeri-
cally accessible length and time scales. This provides a
new, powerful method to determine the true asymptotic
behavior of deposition processes dominated by surface
diA usion.

Before discussing specific models we outline the possi-
ble scenarios and their consequences for the stability of
the growing surface. Let the height h(x, t) be measured
relative to a high symmetry plane of the underlying crys-
tal. Then j(0) =0 and j has to be an odd function of m.
Expanding j to linear order yields an Edwards-Wilkinson
(EW) [15] term vzV h on the right-hand side of (1), with
vz= —j'(0). If the current is in the downhill direction,

j &0, we have v2&0 and the surface is stable. In fact,
all allowed nonlinearities are irrelevant compared to the
EW term [5] and we conclude that z =2, g=(2 —d)/2.
If, however, the current flows uphilI, v2 & 0 and the sur-
face is linearly unstable at long wavelengths. Assuming
that the small scale fluctuations are suppressed by a
Mullins-type equilibrium term —v4V (V h), the critical
wavelength for the instability is k, = 27r( —v4/vq) '

The asymptotic surface morphology in the unstable case
is expected to depend on higher order nonlinearities as
well as on the details of the model (see below). The KPZ
nonlinearity is capable of balancing a negative EW term
such that a positive efT'ective v2 is generated on large
scales [16], but it is not known whether the weaker non-
linearities compatible with the conservation law (1) have
a similar effect.

We emphasize that there is no physical principle that
would single out one of the two scenarios described above.
In fact, in general stable and unstable growth occurs for
the same system at different surface orientations. To see
this, suppose e is chosen such that another high symmetry
plane is reached at a tilt m~. Then j(m~) =j(0) =0,
and there exists (at least one) inclination m* where v2
= —j'(m) changes sign. The two scenarios then imply
that growth is linearly unstable (stable) for m & m*
(m & m*), or vice versa.

An important example of this type of behavior was dis-
cussed a long time ago by Schwoebel [17]. He was con-
cerned with the consequences of the experimental obser-
vation [18] that atoms diffusing on certain vicinal sur-
faces prefer to be incorporated at the ascending step bor-
dering a terrace, since reaching the descending step
would involve traversing a potential barrier. If island for-
mation on the terraces is neglected, this leads to an uphill
current j (m) = F/m which, because j'(m) & 0, stabilizes
the surface. The symmetry requirement j(0) =0 implies,
by continuity, that the 1/m behavior must terminate
below some slope m* associated with the onset of nu-
cleation on terraces, and j'(m) )0 for m & m*. Hence a
singular (—=high symmetry) surface is destabilized by the
Schwoebel effect, as previously pointed out by Villain [2].

In our numerical simulations, an average surface in-
clination was imposed through the boundary conditions
and the resulting current was recorded by counting the
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FIG. l. Surface diffusion currents for the one-dimensional
conserved RSOS model [19] with nearest (for H ~ 2) and
next-nearest (for 0 = 1) neighbor hopping. (a) L =20, various
H; (b) H =2, various L Averages were taken over at . least 10
attempted moves per site in the steady state.

number of diffusion jumps in different directions. The
fact that surfaces with j'(m) &0 are linearly unstable
makes it difficult to measure the current at such inclina-
tions. This problem can be avoided (at least if finite size
effects are not too severe; see below) by choosing the sys-
tem size smaller than the critical wavelength X,.

As a first example, Fig. 1 shows results for a restricted
solid-on-solid (RSOS) model for nonequilibrium surface
diffusion without deposition [19]. In this one-dimensional
model particles of unit size are transferred between
neighboring sites subject to the restriction that the
heights h; satisfy ~h;+~ —h;~ ~ H before and after the
move. Depending on the precise way the moves are at-
tempted, the dynamics may or may not satisfy detailed
balance (DB) [19]. In the DB case the net current is
identically zero [20]. In the non-DB case we observe, for
a small system (size I =20), a net current which varies
smoothly with the imposed slope [Fig. 1(a)], vanishing
both at m =0 (by symmetry) and at the maximum al-
lowed slope m =H. The derivative j'(0) changes sign at
H = 3, in accordance with the transition from stable to
grooved surface morphologies at zero average tilt found
in [19]. In Fig. 1(b), showing the "stable" case H =2 for
larger systems, the current is seen to drop sharply to zero
at a critical slope m„which shows some dependence on I,
and is smaller than the slope m* at which j'(m) (as
determined for I =20) changes sign. The drop marks the
formation of a grooved state composed of pieces of slope
0 and H, similar to those observed previously for 0 & 3
[19] [note that mass conservation requires grooved states
to consist of regions of slopes for which j(m) =0]. The
fact that the instability sets in at a slope where the sur-
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FIG. 2. Surface diA'usion currents for the one-dimensional
SOS deposition model [6] with n =1 (lower data sets) and n =4
(upper data sets). The surface was equilibrated in an average
deposition Aux of one particle per ten MC steps at temperature
T=O. The substrate sizes are L =16 (&&), L =32 (0), L =64
(0), and L =128 (O, for n =4).

face is still linearly stable can be understood by following
the time evolution. This reveals that the transition to the
grooved state occurs through the nucleation of a region of
maximal slope h;+~ —h; =H. Since no moves are allowed
in such a region, it is very hard to destroy and will contin-
ue to grow once it has reached a certain, critical size. In
contrast, a surface prepared at m & m* develops a
periodic structure corresponding to the fastest growing
wavelength J2X, of the linear instability. This is in close
analogy with the well-known behavior of phase separating
systems in thermal equilibrium [21]: m* corresponds to
the spinodal, m, is the coexistence boundary, and in the
region m, &m & m* the surface is metastable. Indeed,
in one dimension (1) is very similar to a noisy Ginzburg-
Landau model with a conserved order parameter m and
thermodynamic potential fdm j(m ) [22].

Next we consider a solid-on-solid model [6] in which
random deposition at a rate F is combined with collective
surface diffusion governed by the Hamiltonian & =K
xg;~h;+~ —h;~". For F=0 the surface is in thermal
equilibrium and j=0. At a finite deposition rate a mor-
phological transition was observed as a function of n,
from a stable phase with Edwards-Wilkinson scaling at
n =1 to a grooved phase at n =4 [61. Our data for the
diffusion current depicted in Fig. 2 show that this transi-
tion fits nicely into the general framework: The current is

uphill for n =4, destabilizing the singular (m =0) sur-
face, and downhill for n =I (in the intermediate case
n =2 [6] the current is unmeasurably small; however, we
are not aware of any reason why it should vanish entire-
ly). Moreover, for n =4 the current is essentially zero up
to a slope m, (L) which is larger than the maximum m*
of j(m) (as estimated from the simulations at small L),
indicating a nucleation-driven transition to the grooved
state for m (m, [cf. Fig. 1(b)]. For m & m, the numeri-
cally determined structure factor is consistent with
Edwards-Wilkinson behavior on large scales. Similarly,
the structure factor for n =1 at large slopes shows the

breakdown of scaling associated with the formation of a
grooved state [6].

We conclude that the morphological transition ob-
served in this model as a function of n is essentially analo-
gous to that of the RSOS model as a function of H, the
main effect of the deposition flux being to break DB rela-
tive to the Hamilton ian )V. Nevertheless, comparing
Figs. 1 and 2 two important differences are noted. First,
the deposition model shows severe finite size effects, par-
ticularly for n =1, which prevent us from obtaining a
quantitatively reliable estimate of j(m) in the asymptotic
(L ~) limit. We attribute this to the fact that the
roughness exponent for the linear theory with vq =0,
which, due to the smallness of j(m), is expected to
govern the surface fluctuations on intermediate length
scales, is g =

z in one dimension. Consequently, the
slope fluctuations diverge with system size as L» ', and it
becomes difficult to fix the local slope through the global
boundary conditions. Second, the current does not decay
to zero for large slopes. Since the inclinations appearing
in the grooved states are associated with the zeros in

j(m) (see above), this implies that the grooved states of
this model do not have well-defined slopes in the limit
L ~, in accordance with the findings of [6].

Our final example is the class of models introduced by
Wolf and Villain (WV) [1], in which a freshly landed
atom relaxes immediately to the site with the largest
coordination number within a distance l from the deposi-
tion site. It can be shown [20] that j(m)—=0 in one di-
mension if no distinction is made between kink sites with
coordination number N; =2 and trapping sites with

N; =3. Consequently, any net current in the original WV
model (which does distinguish between N; =2 and 3) is

solely due to the rather rare events in which a particle has
a choice between a trapping site and a kink site. Not
surprisingly, the currents measured in our simulations of
the one-dimensional WV model are very small, and ham-
pered by severe finite size efT'ects. The asymptotic (L

~) regime could only be accessed for rather large
slopes (m =2) where we obtain a downhill current j= —0.0012 for l = 1. Using the linear theory dh/Bt
= vqV h —v4V h+ g we estimate that the time-dependent
surface width g(t) should cross over from Mullins scal-
ing, p = f [1l, to EW behavior (p =

~ ) for t & r,
—v~ —10, which is well beyond the scope of available
numerical work [1,3,7]. The sign of the current can be
reversed by introducing (for 1~ 2) a "Schwoebel" pa-
rameter which governs the probability for an atom to be
reflected at a descending step.

If the severe finite size effects in the one-dimensional
deposition models can indeed be attributed to the fact
that g& 1 for vs=0, it should be an advantage to go to
the two-dimensional case, where the slope fluctuations
diverge only logarithmically (/=1). In Fig. 3 we show
the diffusion current measured for a two-dimensional ver-
sion of the WV model. The data have only a moderate
size dependence, and the current is downhill, as in d=1.
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F I G. 3. Surface diA usion current for a two-dimensional ver-
sion of the Wolf-Villain model [I] with nearest neighbor hop-
ping. The current was averaged over between 10 (for L =80)
and 1.6&&10 (for I =20) monolayers.

We estimate that v2=0.0075, corresponding to a cross-
over time t, =2&10 . Simulations of a large system
(L =400) up to I =10 gave the estimate p=0.2, which
is consistent with other numerical work in two dimensions
[7] and suggests that the model is governed by the non-
linear Villain-Lai-Das Sarma equation [2,4] on inter-
mediate time and length scales.

In conclusion, we have outlined a new approach to
surface diA'usion controlled deposition processed which
focuses on the inclination-dependent diA'usion current.
This quantity contains the full information about the
large scale behavior of the surface, similar to the
inclination-dependent growth rate in KPZ-type processes
[9,12]. Our central prediction is the generic occurrence
of surface diAusion induced growth instabilities of the
kind found previously [6,19] in specific models. The gen-
erality of the phenomenon suggests that it may be
relevant to real deposition processes. Since real surfaces
are not subject to the constraints of our models, it seems
plausible to conjecture that the generation of large sur-
face gradients by the linear instability implies, in eAect,
the breakdown of the solid-on-solid assumption (ii) of
ideal MBE, leading to amorphous growth and ultimately
to KPZ behavior [12]. This provides a new perspective
on the question about the universality class of MBE:
Since the amorphous growth associated with v2 & 0 is no
longer epitaxial, the only consistent large scale descrip-
tion for MBE is the Edwards Wilkinson th-eory, which
predicts essentially []at surfaces ((=0) in d=2. Theo-
retically, the outstanding problem is the prediction of the
sign and magnitude of the current for a given microscopic
rule. In particular, it is of interest to know if the small-
ness of the current and the associated large crossover
scales found in most of the cases studied here is an ar-
tifact of the models or a feature of real deposition pro-
cesses.
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