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Onset of the Sawtooth Crash
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A new class of m =1 magnetic islands is presented. These islands have bounded current-density distri-
butions, so that their resistive evolution is slow. Conservation of the total magnetic flux, however, results
in a critical width such that the current density diverges and the separatrix collapses at the X point.

PACS numbers: 52.30.Bt, 52.30.Jb, 52.35.Py, 52.55.Fa

The role that magnetic reconnection plays in the saw-
tooth crash has become unclear [1,2]. A resistive insta-
bility with poloidal mode number m =1 is known to occur
under very general conditions in tokamaks with safety
factors less than unity [3]. The nonlinear behavior of this
instability, however, is incompletely understood.

By nature, sawtooth oscillations require a well-defined
transition between a slow and a rapid mode of evolution.
The m=1 instability is known to have a rapid mode of
growth, the kink-tearing mode [4,5]. In this Letter, I will
show that it also has a distinct slow mode of growth, the
m=1 tearing mode. I will further show that a transition
to the kink-tearing mode occurs at a critical island width.

By virtue of Ohm’s law, slow or diffusive growth re-
quires that the perturbed current density J be commensu-
rate with the equilibrium current density Jo. The m=1
tearing mode is similar in this respect to m = 2 tearing
modes [6]; both have homogeneously distributed current,
unlike the kink-tearing mode [7]. The amplitude of the
current-density perturbation, however, is significantly
larger for the m=1 than for the m = 2 tearing modes.
For thin islands (w <A, where A is the wavelength), J
may be evaluated from the property that the current per-
turbation is proportional to the amount of reconnected
flux v

fjdx =A'y,
where x is the transverse coordinate. The constant of
proportionality A" measures the free energy available for

reconnection. Upon substitution of the estimate y—~J
x w2, one finds

j/Jo~WA'.

It is well known that the m=1 Iinstability is dis-
tinguished by large positive values of A' [8],

AAI>> 1.

As a result, the classical analysis of tearing modes [6],
based on the approximation that the flux is constant
throughout the island region, holds only for extremely
thin m=1 islands (W< 1/A{). This can be seen from
(W) — 5 (0) ~Jw?~(wA)§(0). The regime wA{~1,
by contrast, is marked by strong current nonlinearities
and requires the application of a different formalism.
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Before describing the regime wA[~1, it is necessary to
comment on the role played by the braiding of magnetic
field lines. Magnetic braiding has been invoked to ex-
plain, most notably, observations of sawtooth crashes
without complete reconnection of the core magnetic flux
[9]. However, significant braiding requires fairly large is-
lands. The work presented here, by contrast, is concerned
with thin islands. This work and the magnetic braiding
model should thus be regarded as complementary.

The analysis proceeds from the low-beta reduced mag-
netohydrodynamic (MHD) equations. The magnetic
field is taken to be helically symmetric. It is expressed in
terms of the helical flux y through the auxiliary field By:

B=2+¢(r6—B),

where By =ZXxVy. Here ¢ is the inverse aspect ratio and
2,0 are, respectively, the toroidal and poloidal unit vec-
tors.

The current density J is determined by Ampere’s law,
J=V2y—2. In equilibrium, B-VJ =0 so that J is con-
stant on flux surfaces:

Viy=I(y).

For thin islands, the Laplacian can be approximated by
8%y/dx?, where x =r —r and r; is the radius of the g =1
resonant surface. A closed-form solution can then be ob-
tained by successive radial integrations [7,10].

The first integration yields an expression corresponding
to the Biot-Savart law for the longitudinal component of
the auxiliary field,

Byo=+ 2[F(y)—GO}'2, (1)

where

F(y/)=F(wO)+fw:I(y'/)dy‘/.

Here wo is the value of the helical flux on the island’s
magnetic axis. The two solution branches in Eq. (1) are
connected at the turning point where Bxy=0, or F(y,)
=G(0) (Fig. 1). G(8) is thus the current contained
within the flux surface y, tangent to the radial chord
intersecting the island at 6. The separatrix is the last
flux surface to have a turning point: F(yy)
=max[G(8)]. The constant of integration in F and G
will henceforth be fixed by G (0) =max[G(6)]=0.
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FIG. 1. Current well G and corresponding flux surfaces, with
two radial chords.

The shape of the flux surfaces is determined by a
second integration:

v dy )

= +
x+ (y,0) =x,(0) £ v Byg’

where x,(8) represents the radial position of the turning
point. The radial excursion x + (w,0) may alternatively
be expressed as

x 1 (y,0) =x,(0) + [V 4Bxe ®

vi [(y) ~

Equation (3) shows that the radial excursion of a flux
surface is the chord integral of the inverse current density
(Fig. 1). The island equilibrium problem is thereby relat-
ed to the problem of inverting chord-integrated tokamak
measurements. Specifically, one finds from Egs. (1) and
(3) that the width of the separatrix is given by the Abel
transform of the inverse current density,

w(G)=2'/2fG°dF(F—G)-'/21(F)“, (4)

where F and G serve as the radial and azimuthal indepen-
dent variables. Abel’s inversion formula will be used to
construct a solution of the equilibrium equation.

The equilibrium problem is closed by matching the
solution in the island region, Eq. (2), to the solution of
the linearized toroidal MHD equation away from the is-
land. There follows the global equilibrium equation

- dy _ (= < I >____AiG| s
fw, Bvs vo AV B 22 cos@, )

where
I Y
ey, 00 ==, dony,0)

and 6, is the turning point determined implicitly by
G(6,) =F(y). Equation (5), as well as similar equations
below, must be interpreted as applying to the limit where
the upper bound of integration, taken to be identical for
both integrals, goes to infinity. In this equation the first
integral is the distance between two surfaces of equal
flux, the second integral subtracts the m =0 component
from the first, and the right-hand side represents the dis-
placement of the core. The lack of an m =0 component
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in the equilibrium equation reflects the freedom to choose
the initial current distribution. I will return to this point
below.

A solution of the global equilibrium equation can be
constructed as follows. First, a simplified expression for
the m =0 component is obtained by evaluating Eq. (5)
for G =0:

* dF / 1 * dF AiG,
mein 1 <B*9> J:) QP 28 ©

The width of the separatrix is next calculated from the
equilibrium equation:

w(c)=—zf0°°dTF

1 1

Bro  (QF)72
— A9 (eos0(G) — 1. )
1o

Last, the inner flux distribution is found by inversion of
Abel’s equation, Eq. (5):

w(G)
(G -F)1'2

Equations (7) and (8) show that the current distribution
inside the separatrix, I(F)=(dy/dF) ™', is uniquely
determined by the current distribution outside the sep-
aratrix and by the azimuthal dependence of the perturba-
tion.

It is clear from Egs. (7) and (8) that there exist m =1
islands with bounded current distributions. 1 will next
show, however, that a current singularity invariably ap-
pears as a result of the Ohmic evolution of these islands.
Whereas the complete solution of the evolution problem
is outside the scope of the present Letter, the formation of
the current sheet can be deduced from a global constraint
resulting from Ohm’s law. This constraint takes its sim-
plest form in the case where the bulk current distribution
is in diffusive equilibrium, nJo=F,. In this case, there is
no diffusion of flux away from the island, and the total
flux through the island region must be conserved. Equiv-
alently, the m =0 component of the island layer width is
conserved. Taking the circular equilbirium as a reference
state, there follows

Jo ()= S 5 ©)

Bxoo

L[
vE) =y —+ [ a6 ®)

Note that this global flux-conservation property should
not be confused with the local, detailed flux-conservation
property characterizing the kink-tearing regime [5,7].

A more perspicuous form for the flux-conservation con-
straint may be obtained by writing, without loss of gen-
erality,

I(F)=I,l1+ A,(F/F,)] ! (10)

for F>0, where 1(0)=1 and A4,F, are the amplitude
and width of the exterior current perturbation. Note that
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FIG. 2. Evolution of the relative current width v as a func-
tion of the island width u. The line v =u/4 represents the
kink-tearing threshold.

= — | represents current distributions with a singulari-
ty on the separatrix. Substituting Eq. (10) into Eq. (9)
and using Eq. (6) yields

A=—A{G\/I,2F,) "1,

where 7= [5°df f ~ (1),

Assuming that ¢ remains bounded during the island
evolution, Eq. (11) shows that the width of the current
distribution, F,,, must grow like the square of the mode
amplitude G, if a current singularity is to be avoided.
From simple scaling considerations, however, one expects
the current width to grow in direct proportion to the
mode amplitude. The formation of current singularities
is thus unavoidable.

The slope of the separatrix at the X point is 2(1+4)
x[—G"(0)12/1y, where G"=d*G/d6>. The separatrix
crossing angle therefore vanishes for 4 = —1. This sup-
ports the interpretation of the critical amplitude as a
threshold for the kink-tearing mode, the X point being re-
placed by a current ribbon in this mode.

It is useful to illustrate the above considerations with a
particular model. I will take G(8) =G (cos@—1), with
G1>0, and ((f) =(1+f) ~¥2 £> 0. The criticality con-
dition is then

G, < 20,QF )AL,

an

(12)

The solution of the equilibrium equations, Egs. (7) and
(8), can be implemented analytically for the above model.
The evolution of the island may then be studied phenome-
nologically by applying Ohm’s law to the separatrix and
to the island’s magnetic axis. I have integrated numeri-
cally the resulting dynamical equations for the variables
u=A|G?/Iy and v=(F,/2G )%, measuring, respec-
tively, the width of the island and the relative width of its
current distribution. The trajectories are shown in Fig. 2.
The integration was stopped at the critical amplitude
v=u/4. The most significant feature is the attracting
trajectory corresponding to the initial condition v(0) =v¢
=0.497 and u(0)=0. For sufficiently thin islands,
u <1, the attracting solution is self-similar: ©=0. This
is not evident in Fig. 2 as a result of the singularity of
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FIG. 3. Current (J/Io) as a function of flux (A{?y/Io) for
u=0.8, 2.4, and 4.0. Inset: Comparison of the current distri-
bution for the smallest island (dashed line) to the exact solution
of Ref. [7] (solid line).

the evolution for u < 1: ¢~ (v —vo)/u? This singularity
translates the property that arbitrarily peaked currents
diffuse arbitrarily fast; only when the current has relaxed,
after a time ¢ > wz/n, does the evolution proceed at the
slower rate w~nA'.

The phenomenological evolution model is validated in
part by the agreement between the predicted value of the
reconnection rate in the self-similar limit, #=0.25, and
the exact value given by Rutherford [6]. The current dis-
tributions for three islands lying on the attracting trajec-
tory are shown in Fig. 3. The smallest island is near the
self-similar limit; its current distribution is compared to
the exact solution in the inset. The agreement is again
excellent. Figure 4 shows the separatrix for the same
three islands and for the critical island.

I have shown that well-defined sawtooth crashes result
from the toroidal effects embodied in Aj. This is con-
sistent with numerical simulations of complete sawteeth:
In toroidal geometry [11], a clear, heretofore unexplained
jump in the growth rate follows long periods of sluggish
growth. In reduced magnetohydrodynamics, by contrast,
where (A{) 7! =0, sawteeth are rounded as the onset de-
pends on discontinuities in the gradients of equilibrium
quantities such as the temperature and safety factor [12].
In cylindrical geometry, last, AAj<< —1 and the m =1
mode is ideally unstable. Nonlinear saturation results in
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FIG. 4. Half width of the separatrix for the islands of Fig. 3
and for the critical island.
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current sheets and thus leads to the kink-tearing regime;
the tearing regime is never encountered [13].

Comparison with experimental observations requires a
knowledge of the evolution of A| during the sawtooth
ramp. On the basis of the neoclassical results in Fig. 3 of
Ref. [8], I estimate the value of Aj after a typical JET
sawtooth ramp to be 2.5 cm -1 Using the value wiAj
=25 obtained from Fig. 4 of this paper, there follows
werit= 10 cm. This is comparable to the widths of pre-
cursor [14] and snake [15] oscillations. [t is too large,
however, to account for sawteeth without measurable pre-
cursors, the present detection limit being about 1 cm.

It is instructive to compare the criterion weAj =225 to
linear results. In linear theory, the transition between the
tearing mode (with growth rate y~k{¥3n*A"/) and
the kink-tearing mode (y~k{¥3n'3) occurs for w;A'=1,
where w,-=n'/3k|'|'/3 is the inertial tearing layer width
[16]. Here k| is the radial derivative of the parallel com-
ponent of the wave vector and 7 is the resistivity. The pa-
rameter w;Aj, however, depends exclusively on slowly
evolving global equilibrium parameters, unlike wAj, and
thus cannot account for the abruptness of the onset.
Nevertheless, the linear threshold appears to be consistent
with experimental observations [17].
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