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Reynolds number dependence of turbulence energy spectra and higher-order moments of velocity
differences is explored by numerical integrations of the incompressive Navier-Stokes equation. The
simulations have spatial resolutions up to 5123 and cover 15 < Ry < 200, where R is the Taylor micros-
cale Reynolds number. The energy spectra collapse when scaled by the wave number &, of peak dissipa-
tion and also by the spectrum level at k,. k, varies with Ry in accord with the 1941 Kolmogorov theory.
High-order normalized moments of velocity differences over inertial-range distances exhibit an Ry-
independent variation with separation distance. Implications of these observations are discussed.

PACS numbers: 47.27.Gs

Fully developed turbulence tempts the theorist to
search for statistical properties that are universal when
examined in terms of the correct variables. Kolmogorov
[1] offered such a theory of universal statistics over a half
century ago. He postulated that, in the limit of vanishing
viscosity, the mean dissipation rate ¢ becomes indepen-
dent of viscosity v. In addition, he assumed that € is the
only physical parameter defining the statistics of tur-
bulent fluctuations at scales small compared with those
that contain most of the kinetic energy but large com-
pared with those on which viscosity acts strongly. This
yields the famous prediction of an inertial-range energy
spectrum E(k)~k ~%3, where k is the wave number.
The 1941 Kolmogorov theory also predicts a characteris-
tic dissipation wave number, kd=(e/v3)]/4, in terms of
which turbulence energy spectra of the small scales take
the isotropic form

Ek)=E (k) F(k/ky) , )

where F(x) is a universal function.

The 1941 Kolmogorov theory has had an overwhelming
influence on theoretical and experimental investigations
of the physics of turbulence. Major experimental efforts
have been devoted to verifying Eq. (1); the conclusions
have been mixed, but tend to its favor (see [2] for a re-
cent account). Other predictions of the theory are, how-
ever, challenged by experimental data (see, e.g., [3]) and
computer simulations [4,5], most notably the Reynolds
number independence of the statistical distribution of
fluctuations at scale /;~ 1/ky. This has stimulated, over
the last thirty years, a number of new proposals focusing
on the “intermittency” of turbulence. Despite these ef-
forts, a unifying fundamental framework has not yet
emerged.

In the present paper, we focus on analyzing the Rey-
nolds number dependence of turbulence statistics using
data from direct numerical simulations of homogeneous
isotropic Navier-Stokes turbulence over a range of R,.
Isotropic turbulence has been simulated by integrating
the Navier-Stokes equation with periodic boundary con-
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ditions, using the pseudospectral method [6]. Until re-
cently, the resolution has been limited, by computer
memory and speed, to 256 points in physical space, cor-
responding to a ratio of maximum to minimum wave
number of 128. This permits good definition of the near-
dissipation range of turbulent flows with R, < 150 [7,8].
We have performed simulations at resolution 5123 on a
Connection Machine CM-200 computer at the Advanced
Computing Laboratory at Los Alamos National Labora-
tory. With this resolution and lower ones, we have been
able to simulate stationary turbulent flows over a range of
R, up to 200, with adequate resolution of the dissipation
range. The result is a large database for the present
analysis and for future studies.

In order to generate isotropic, periodic, stationary tur-
bulent flow fields, a forcing term is added to the Navier-
Stokes equation in wave-number space, only at the wave-
number shells k =1 and 2. The forcing term is construct-
ed to keep the total energy in each of the first two wave-
number shells constant in time, a procedure first intro-
duced in [9]. For a detailed description of the simula-
tions, see [10]. Precisely the same forcing was used for
most flows reported below, where the only parameter
varied is the kinematic viscosity v.

In this Letter, we examine the energy spectrum, a
two-point statistic, and also the normalized higher mo-
ments (flatness factors) of the longitudinal velocity incre-
ment 8v; =e-u(x+/e) —e-u(x) across a distance / in the
direction e. These quantities have been measured and re-
ported by many authors for simulations of moderately-
high-Reynolds-number flows, but their Reynolds number
dependence has not yet been studied systematically for a
substantial range of R,. The R, dependence of the
derivative statistics was studied by Kerr [4] for a smaller
range of Reynolds numbers than treated here.

Our main results are as follows: (1) Energy spectra
rescaled by a characteristic dissipation wave number k,
(to be defined below) and the spectrum level at k, col-
lapse well into a single curve that also agrees accurately
with experimentally measured spectra at much higher
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Reynolds numbers; (2) the variation of k, with R, is con-
sistent with the Kolmogorov 1941 theory; (3) high-order
flatness factors of velocity increments appear to be con-
sistent with universal dependence on the separation dis-
tance, if the latter lies in the inertial range and is normal-
ized by the forcing scale. The observed dependence im-
plies intermittency growth with decrease of scale. We
characterize this growth by a set of power-law exponents
that are in agreement with previous numerical and exper-
imental results.

In Fig. 1, we display a superposition of normalized iso-
tropic energy spectra for R, = 15, 36, 100, 150, 160, 200.
Wave numbers are normalized by k,, the wave number at
which the dissipation spectrum kZ2E(k) peaks, while
E (k) is normalized by E(k,). Minor adjustments have
been made because k, does not always lie exactly at a
wave number of the discrete set permitted by the cyclic
boundary conditions. The results plotted in Fig. 1 show
that the normalized spectra at different Reynolds num-
bers collapse accurately to a single curve. This suggests
the existence of a universal function F(k/k,), at least for
the range of the Reynolds numbers explored here, such
that the energy spectrum takes the form E(k)=E(k,)
x F(k/k,). The higher-Reynolds-number spectra extend
further to the left of k, in the plot (smaller normalized
wave numbers). Note that the spectrum at R, =150 is
obtained by using a time-independent forcing term simi-
lar to that used in [7]. The results indicate that the form
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FIG. 1. Normalized isotropic energy spectra obtained from

direct numerical simulations at various Reynolds numbers.
Spectra are rescaled by the maximum dissipation wave number
kp and E(kp). Solid line: R, ==200; dotted line: R;==160;
dashed line: Ry==100; dot-dashed line: R,=36; dot-long-
dashed line: Ry==15; short-long-dashed line: R;==150 ob-
tained with a different (time-independent) forcing term. The
inset zooms in on the area outlined by the rectangle.
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of F(k/kp) is insensitive to the form of the forcing term.
These data support Kolmogorov’s 1941 description [1]
of turbulence energetics in two ways. The first is the evi-
dent collapse of the data in Fig. 1 in both the dissipation
range and below (k <k,). The second is that the col-
lapse at wave numbers k/k, < 0.2 [log o(k/k,) < —0.7]
is to a curve that appears consistent with an asymptotic
k ~573 inertial range. Further verification of the Kolmo-
gorov 1941 description concerns the relation between k,
and Ry, or kg=(e/v®)'* the Kolmogorov dissipation
wave number which can be independently measured using
flow parameters € and v. Kolmogorov’s prediction (1)
implies a linear relation between &, and k4. In Fig. 2, we
show a plot of k, vs k4. At large Reynolds numbers, k,
and ky; appear to have a linear relation. It should be
stressed that the Kolmogorov relation (1) is not just an
asymptotic law for high R,, and may also be valid for
small Ry, provided that kg is replaced by k, in (1). The
above results indicate further that defining the rescaled
wave number k, in terms of the global flow parameters (e
and v) does require that the Reynolds number be large.
In summary, we conclude that the Kolmogorov 1941
description of turbulence energetics is supported in the
high end of the range of Reynolds numbers explored here.
We do not attempt to determine the inertial-range ex-
ponent, because the available wave number range k/k,
= 0.2 is quite narrow. It must be stressed that one can-
not simply lay a straight edge on the data close to k, and
proclaim a power law with exponent equal to the slope of
the line. It is essential to take into account the effects of
the neighboring dissipation range. In order to obtain an
inertial range extending more than a decade which is free
of dissipation range effects, k/k, <0.02 is needed, or
kp = 50k min, where ki, is the lowest wave number free
of forcing. Taking kmin=3 (meaning that forcing is
applied only on the first two wave-number shells), this
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FIG. 2. The wave number of peak dissipation &, vs the Kol-
mogorov dissipation wave number k4 =C(e/v3)"%, The straight
line is drawn to highlight the linear relation between k, and k4
at high Reynolds numbers.
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estimate yields k,== 150, which requires a resolution
2 15003 this computation should be possible on a
teraflop computer.

A closer look at the form of F(k/k,) suggests that for
wave numbers close to but below k,, the energy spectra
exhibit a somewhat flatter behavior than at lower k
(k/kp, <0.2). One possible explanation is that a flatter
spectrum near k, reflects some interesting dynamics re-
lated to vortex structures at scales near l/k,,, since these
are scales where both the stretching and the diffusion of
the vorticity are mostly important (k, is the maximum
wave number for the vorticity power spectrum). On the
other hand, certain second-order closures [11] predict
such flattening. These closures deal only with second-
order statistics and cannot portray explicit vortex struc-
tures in physical space. They give a bump below k, in a
plot of k3*E (k) because the spectrum falls rapidly when
k > kp,. This rapid falloff effectively removes many triad
interactions that contribute substantially to energy trans-
fer at lower k. The result is inefficient energy transfer
just below k, and a consequent pile up of energy.

The question of the existence of universal energy spec-
tra has been the subject of considerable discussion in ex-
perimental investigations. Recently, She and Jackson [2]
did a study, similar to that described here, for a collection
of experimental spectra with R, ranging from 130 to
13000, and found, after renormalization with respect to
kp, that all spectra do collapse quite well to a universal
curve. In order to compare directly our numerical results
with experimental spectra which are obtained from one-
dimensional time series, we have computed one-dimen-
sional energy spectra from our data set. The results are
shown in Fig. 3 (lines), together with a few (normalized)
experimental spectra (points) with R, up to 13000 [3,12].
It may be seen that our numerical spectra agree closely
with experimental results at scales close to the dissipation
cutoff k,, even though the Reynolds numbers are far
apart. This comparison demonstrates that both experi-
mental and numerical energy spectra exhibit the same
universal features. In addition, the comparison supports
the reliability of the simulations at large k.

Questions still exist concerning the behavior of the en-
ergy spectra at much larger Reynolds numbers. The
above results by no means imply universality to infinite
R;, both because of the limited range of the Reynolds
number we have explored and because of resolution limi-
tations for k> k,. The present results do suggest that a
simple kind of universality holds to a good approximation
over a wide range of Reynolds numbers.

Next, we examine high-order statistics of velocity in-
crements. Second-order quantities such as the energy
spectra give very limited information about turbulent
structures. Coherent vortex structures in the form of rib-
bons and filaments have been observed in both numerical
simulations and laboratory experiments [13]. They con-
stitute an important aspect of turbulence dynamics. It
has been suggested [14] that these structures may be par-
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FIG. 3. Normalized 1D energy spectra obtained from direct
numerical simulations at various Reynolds numbers. Spectra
are rescaled according to the maximum dissipation wave num-
ber k, and its energy E (k,). Solid line: Ry = 200; dotted line:
Ry = 160; dashed line: R, = 100; dot-dashed line: Ry ==70.
Points are a collection of experimental data [3,12].

ticularly relevant to the growth of intermittency with R;.
However, it is still not clear to what extent intermittency
effects are universal.

Previous numerical studies [7,10,14] and a number of
experimental studies (e.g., [3]) have shown that velocity
differences become increasingly intermittent and non-
Gaussian for decreasing separation distances. The depar-
ture from Gaussian behavior is manifested by the increas-
ing flatness factors. In order to investigate possible uni-
versal features in the growth of flatness factors, we have
computed [10] the spatially averaged probability density
functions (PDFs) of the velocity increments for a few
separation distances and for several Reynolds numbers;
from these PDFs we evaluate the flatness factors. We ob-
serve that these spatial flatness factors fluctuate in time,
although we have a fairly large spatial sample size
(~512%3=1.3x10%). The level of fluctuations increases
as separation distance decreases (smaller scale). At large
scales (inertial-range distances), this fluctuation is negli-
gible (about 1%), while at smallest dissipation length
scale (across two mesh points), the fluctuation level is
about 5%-10%. We have also consistently observed in-
creasing fluctuations of the spatial-averaged velocity
derivative flatness with increasing Reynolds numbers.
These observations indicate that small scales are more in-
termittent in time than large scales.

In Fig. 4, the fourth-order flatness factor ((v,)*)/
((6v,)%? is shown (in log-log coordinates) as a function
of the separation distance r for simulations at several
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FIG. 4. Flatness factors of the longitudinal velocity differ-
ences vs separation distances at several Reynolds numbers.

Reynolds numbers. Remarkably, at large scales the flat-
ness data for different R, superpose very closely (skew-
ness data do not superpose, a result not shown here).
They grow algebraically as r decreases, and then grow
faster for r smaller than a certain distance ry. At larger
Reynolds numbers, the algebraic range extends further
(rq4 is smaller). Here we have evidence of an intermitten-
cy growth associated with a range which becomes more
extended as Rj increases. This can probably be described
as inertial-range intermittency growth rather than the
stronger intermittency associated with smaller dissipation
scales. Two distinct kinds of intermittency growths al-
ready have been observed in numerical simulations in
[15].

What is in common in all our simulations is the forcing
which always acts at k=1 and 2. Thus, we can also con-
sider the separation distance normalized by the scale of
the forcing where the cascade of energy to small scales
starts. The universal dependence of the flatness factors
on separation distance indicates that the departure from
Gaussian behavior at a length scale r only depends on
r/ro where rg is the size of the energy containing eddies.
In other words, intermittency grows with each step of the
inertial-range energy cascade.

A quantitative characterization of the inertial-range in-
termittency growth is the best-fit exponent a of the alge-
braic dependence: F4(r) —r® A least squares fit in the
range 0.4 <r < 1.9 yields a= —0.105* 0.01, where the
error bar specifies the range of scattering of the exponent
at different Reynolds numbers. This value is close to ear-
lier numerical results —0.11 [7] and experimental results
—0.09 [3]. The Kolmogorov 1941 theory predicts that
a=0. A nonzero value of a, if it persists to high Rey-
nolds numbers, invalidates Kolmogorov’s 1941 descrip-
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tion of high-order velocity structure functions. It remains
unanswered why Kolmogorov’s description of turbulence
energetics is so accurate. One plausible explanation [5] is
that the structures that dominate intermittency and
higher statistics do not play a significant role in the mean
transfer of energy. The latter may be mediated principal-
ly by flow regions where intermittency is not strong.
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