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Quantum Noise Reduction in Optical Amplification
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Quantum fluctuations in optical amplification are investigated with a nondegenerate optical paramet-
ric amplifier whose internal idler mode is coupled to a squeezed vacuum. Reductions of the inherent
quantum noise of the amplifier are observed with a minimum noise level 0.7 dB below the usual noise
level of the amplifier with its internal idler mode in a vacuum state. With a small coherent field as the
signal input, the amplified output exhibits an improvement in signal-to-noise ratio of 0.5 dB for the case
of a squeezed vacuum as compared to a vacuum state for the amplifier’s internal mode.

PACS numbers: 42.50.Lc, 42.50.Dv

Quite apart from its significance in technological
terms, the question of the fundamental noise performance
of an amplifier has a long history in physics because of its
intimate relationship to quantum measurement [1-5].
Indeed, if “noiseless” amplification were possible, then
the microscopic quantum world could be magnified to a
macroscopic scale for our casual inspection. However,
the principles of quantum mechanics require an amplifier
to add noise to any input that it processes, as has been
codified by Caves in a fundamental theorem for phase-
insensitive amplifiers and in an uncertainty relation for
phase-sensitive amplifiers [S]. Whatever the particular
origin (e.g., spontaneous emission in a laser amplifier),
the fundamental excess noise associated with the
amplification process can be viewed as arising from the
coupling of the signal input to the internal modes of the
amplifier and hence depends upon the state of these
modes, which in the best case until now has been a vacu-
um state. For phase-insensitive amplification, the quan-
tum noise added by internal vacuum-state modes is phase
insensitive and gives rise to noise at the output which is
equivalent to half of a noise photon at the input in the
limit of large gain. A coherent field as the signal input
will thus suffer a 3 dB degradation in signal-to-noise ratio
in the large gain limit; furthermore, nonclassical features
of the signal input will be lost for amplification with
power gain greater than 3 dB for this kind of amplifier
[6].

If instead the internal modes of the amplifier are cou-
pled to a squeezed vacuum rather than to the usual vacu-
um state, then the added quantum noise at the signal out-
put will be phase dependent reflecting the reduced and
enhanced fluctuations of a squeezed state relative to the
vacuum [7]. Yurke and Denker [8] and others [9-11]
have in this way suggested that the excess noise for
phase-insensitive amplifiers can be effectively eliminated
by arranging for signal information to be encoded on the
quadrature-phase amplitude of the input corresponding to
that with reduced noise at the amplifier’s output. Of
course in this case the added quantum noise demanded by
Caves’s amplifier uncertainty principle goes mostly into
the (unused) conjugate quadrature; the originally phase-
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insensitive amplifier is thus converted to a phase-sensitive
amplifier by squeezing its internal modes.

In this Letter we present results from an experiment
which implements these ideas related to the quantum lim-
its of amplification. In particular, by coupling the
squeezed vacuum to the idler mode (internal mode) of a
nondegenerate optical parametric amplifier (NOPA), we
observe phase-sensitive amplification for a vacuum-state
input to the signal mode and record a minimum amplified
noise level 0.7 dB below the usual phase-insensitive noise
level for the amplifier with its idler mode in a vacuum
state. Note that the best possible noise reduction for the
amplified signal for the case of a perfectly squeezed idler
and large gain is 3 dB, in which case there would be no
degradation in signal-to-noise ratio. For our system with
a small coherent field as the signal input, the amplifier
exhibits an improvement in signal-to-noise ratio of 0.5 dB
for a squeezed input to the idler as compared to the usual
vacuum input.

As a base line for our discussion of quantum amplifi-
cation, we consider the following general model for a
phase-preserving linear amplifier [4,5]:

aM=VGa"+F, (1)

where g inouv) represent the signal modes for input and

output and G is the amplifier’s power gain for the signal
channel. The operator F is associated with the internal
modes of the amplifier and is responsible for added quan-
tum noise in amplification. For an ideal NOPA, F
=G —15" with b representing the input idler mode. If
signal information is encoded on the quadrature-phase
amplitude X, (8)=de ~®+4 e’ then the noise of the sig-
nal field at the amplifier’s output as specified by the vari-
ance of X" is given by

N(O) =GNI(0)+(G—1)NM(6), (@)

where N (0)=((X; — (X)) (i=a,b) and X,(8)=be ~*°
+b'e® This relationship is illustrated by the simple dia-
gram in Fig. 1(a) where the noise of the signal output is
seen to arise from two contributions, namely, direct
amplification of input signal noise and noise added trom
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FIG. 1. (a) Simple diagram to illustrate amplification by a
nondegenerate parametric amplifier. The signal input is in a
coherent state, while the idler is in either a vacuum state (repre-
sented by a circle) or a squeezed state (ellipse). (b) Principal
components of the actual experiment.

coupling to internal modes of the amplifier (in this case,
the idler mode). With a coherent state as the signal input
and with the idler mode in a vacuum state, we have
Nin(g) =1=Nj"(0) (circular areas). Hence the quan-
tum noise gain GqEN,ﬁ’“‘/N,}'“=2G— 1, so that the
signal-to-noise ratio R of the output relative to the input
becomes R=(2—1/G) ~'— % for G>1 (3 dB degrada-
tion in signal-to-noise ratio). On the other hand, with the
idler mode coupled to a squeezed vacuum (elliptical
shape), the noise in the quadrature specified by 6— is re-
duced while that in the orthogonal quadrature 64+ is
enhanced, so that NJ"' =G +(G—1)N+ and R+[1+(1
—1/G)N+17!, where N+ =N{"(6+). Hence N — G
and R-—1 for N -— 0, which approximates noiseless
amplification for the quadrature phase of the signal beam
specified by 6.

Turning from this discussion of an ideal NOPA, we
present in Fig. 1(b) an overview of our actual experimen-
tal arrangement, which consists of a nondegenerate para-
metric amplifier whose idler mode is itself coupled to a
squeezed vacuum (generated by a second parametric am-
plifier). In fact both the “amplifier” and the “squeezer”
are NOPAs of the type described in detail in Ref. [12].
Briefly stated, each is operated as a frequency degenerate
but polarization nondegenerate subthreshold optical para-
metric oscillator by employing noncritically phase-
matched type-II down-conversion in KTP at 1.08 um
within a traveling-wave cavity. The inputs for the
amplifier shown in Fig. 1(b) are the outputs of the polar-
izer P1 and are orthogonally polarized signal (p-
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FIG. 2. Spectral density of photocurrent fluctuations for
i-(Qo) generated by the amplifier’s signal output dow as a
function of local oscillator phase 6. Trace i is the amplified
noise level ®g from the NOPA when the idler mode is in a vac-
uum state, while trace ii is the noise level ®(0) when the idler is
in a squeezed-vacuum state. In each case, the signal input to
the amplifier is a vacuum state. Trace iii gives the vacuum-
noise level ¥ for the balanced detector; ¥o lies 20 dB above the
electronic noise floor. The dashed line iv is the noise level ex-
pected for a lossless system with a perfectly squeezed idler.
Spectrum analyzer acquisition parameters are resolution band-
width of 100 kHz, video bandwidth of 100 Hz, analyzer fre-
quency center frequency Qo/2zx=1.1 MHz, and sweep time of
0.28 s.

polarized) and idler (s-polarized) beams which are mode
matched through the input coupler T4 =0.07 into the
amplifier cavity. A squeezed vacuum for the idler input
to the amplifier is generated by projecting the signal and
idler modes from the squeezer along a direction 45° rela-
tive to these polarizations [12] and is accomplished with
the half-wave plate (A/2) and polarizer (P1) shown in
Fig. 1(b). Also injected into P1 is a coherent signal
beam which has been frequency shifted (single sideband)
by Q¢/2x=1.1 MHz relative to the frequency w of de-
generacy for the amplifier and squeezer. By using a
mechanical chopper to block and unblock the field from
the squeezer, we can couple either vacuum or squeezed
vacuum to the idler mode of the NOPA. The amplified
signal from the output of the NOPA is separated from
the idler output by polarizer P2 and is sent to a balanced
homodyne detector where information about the quadra-
ture-phase amplitudes of the signal beam is obtained
from measurements of the spectral density of photo-
current fluctuations of / —.

The noise behavior of our amplifier in the absence of a
coherent signal is investigated by blocking the injected
signal at P1 thus leaving the input to the signal mode of
the amplifier in a vacuum state. As illustrated in Fig. 2,
when the idler mode of the amplifier is also coupled to a
vacuum state (squeezed input to P 1 blocked), we observe
a phase-insensitive increase in the noise level of the signal
output, denoted under these conditions by ®g (trace i).
By contrast, with a squeezed vacuum for the idler input, a
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FIG. 3. Amplified noise level of the signal output with a vac-
uum state for the signal input. “OFF” represents the noise level
®¢ for a vacuum-state input to the idler mode. “ON”’ gives the
noise level ®(0-) for a squeezed-state input to the idler mode
with phase offset adjusted for minimum noise. The noise levels
[®G,#(6-)] are referred to the vacuum-noise level ¥o (0 dB)
for the balanced detector. Acquisition parameters are as in Fig.
2 except that the video bandwidth is 30 Hz and sweep time is
0.96 s.

phase-sensitive noise level ®(0) for the signal output is
observed as the phase (8) of the squeezed vacuum is
scanned (trace ii). The point of reference for these mea-
surements is the vacuum-state level ¥¢ for the balanced
detector (trace iii). Notice that for 6=0_-+pr (p in-
teger), the phase-sensitive noise level ®(8) of trace ii
drops below the phase-insensitive noise level ®¢g of trace
i. In qualitative terms, trace i represents phase-insensi-
tive amplification of the vacuum-state input illustrated by
the error circles in Fig. 1(a), while trace ii corresponds to
phase-sensitive amplification with a squeezed idler as in-
dicated by the error ellipses. The dashed line in Fig. 2
(trace iv) is the calculated noise level (see below) for the
case of perfect injected squeezing (N —— 0) and corre-
sponds to the maximum noise reduction possible for the
gain G employed in Fig. 2.

To measure the quantum noise reduction more accu-
rately than in Fig. 2, we manually tune the phase of the
injected squeezed vacuum to reach the operating point
0=0_ corresponding to minimum noise for the signal
output and then chop the output from the squeezer “on”
and “off.” Such a measurement at the highest available
pump power is recorded in Fig. 3, from which we find a
quantum noise reduction A_=®(0-)/ds=0.85 (—0.7
dB) and quantum noise gain G,=®s/¥o=2.6 (4.2 dB),
where we stress that A~ and G, refer to the observed
photocurrent fluctuations. By repeating these measure-
ments at several operating points, we obtain the noise
reduction A— versus the noise gain G4 as plotted in Fig.
4, with the error bars reflecting trace-to-trace fluctuations
in A- and G,. Also shown in Fig. 4 is the result of a
model calculation for our NOPA which generalizes the
ideal case of Eq. (2) to include the total internal loss of
the amplifiers determined to be /=0.32% from measure-
ments of the passive reflection dip of the cavity and the
external losses 1—&=0.30+0.04 due to propagation
from the amplifier to the detector and to detection with
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FIG. 4. Quantum noise reduction A— for the amplified signal
as a function of the detected quantum noise gain G, for a
squeezed idler input with N - =0.52. The solid curve i is the
theoretical prediction for our system as discussed in the text.
The dashed curve ii is calculated from Eq. (2) for lossless
amplification and detection with perfect squeezing for the idler
input.

finite quantum and heterodyne efficiencies [12]. In addi-
tion to measuring the various efficiency factors, we also
examine the squeezing generated by both the amplifier
and squeezer cavities. For example, with the amplifier
cavity tuned off resonance to act as a high reflector, we
observe that the photocurrent noise reduction for the field
from the squeezer is —1.8 dB. With independent
knowledge of &, we then deduce that N - =0.52 for the
idler field Xi"(6—) injected into the amplifier for the data
in Figs. 3 and 4. By analogous techniques, we operation-
ally determine all the experimental parameters required
for the theoretical curve i in Fig. 4. For comparison, the
dashed curve ii in Fig. 4 is derived by assuming no loss
&=1,1=0 as in Eq. (2) and perfect squeezing (V- =0).
This curve corresponds to the best possible noise reduc-
tion A— =R _ that can be achieved for a coherent input
signal and asymptotically approaches —3 dB for G — oo.

Given this characterization of the noise performance of
our system, we next investigate its behavior with a small
coherent signal injected into the signal mode of the
amplifier and concentrate in particular on the detected
signal-to-noise ratio (SNR) for the signal output relative
to the inferred signal-to-noise ratio for the amplifier’s in-
put field, that is, on the ratio R=(SNR)oyu/(SNR)jn.
Note that even without the amplifier (cavity detuned
from resonance), the ratio R; =& <1 due to linear losses
(1 — &) in propagation and detection in passing from the
amplifier’s output to the measured photocurrent. Further
note that even with G, =0 (pump turned off and cavity
tuned on resonance), the passive internal loss / of the
amplifier itself will further degrade performance to a
value Rg < R;. Both R; and Ry are indicated in Fig. 5
for our system. When the amplifier is in fact turned on
(Gq > 1) with the idler coupled to vacuum, the SNR of
the output is degraded yet further to a value R(Gy) due
to the fundamental noise added in amplification as indi-
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FIG. 5. Signal-to-noise ratio R of the amplified output rela-
tive to that of the input as a function of quantum noise gain G,.
The following values are assumed for the variance of the inject-
ed idler mode: Curve i, N—-=1.0 (vacuum state); curve ii,
N -=0.52; and curve iii, N-=0.0 (perfect squeezing). The
dashed line at Rg=0.71 corresponds to the detected SNR due
to passive losses in propagation and detection. The level
R =0.58 represents a reduction of R; due to passive internal
losses of the amplifier for G, =0. Points 4 and B are measured
with a vacuum-state idler and a squeezed-state idler, respective-
ly. Points A and B as well as curves i-iii are for (SNR); =4.8.

cated in Fig. 5 by curve i drawn for N - =1. By contrast
if squeezed vacuum is injected into the idler mode of the
amplifier (V- <1), then R(G,) increases since there is
in this case less contamination of the amplified signal
field by the idler mode. In Fig. 5 we draw two curves to
illustrate this point; curve ii with N - =0.52 corresponds
to our experiment, while curve iii with N — =0 represents
the case of perfect squeezing injected into the amplifier
[still, however, with finite internal amplifier losses / and
with finite propagation and detection losses (1 —&)].
Note that the family of curves presented in Fig. 5 de-
pends upon the actual SNR of the input [here
(SNR); =4.8] and that these curves are drawn for pa-
rameters appropriate to our experiment. Indeed, the two
points indicated in Fig. 5 are obtained with the idler
mode coupled to vacuum (V- =1) yielding R(G,=3)
=(.52 (point 4) and with the idler mode coupled to
squeezed vacuum (N -=0.52) yielding R-(G4=3)
=0.58 (point B). We thus demonstrate an improvement
in SNR by squeezing the internal idler mode of the
amplifier.

An apparently peculiar aspect of Fig. 5 is that the
SNR after the amplification process can exceed the SNR
for the directly detected signal field without amplification
[that is, R -(G4) > R; for N - — 0]. This somewhat sur-
prising improvement can be understood by recalling that
passive losses are responsible for reducing R; and Ry
below unity. Although the internal amplifier losses ex-
pressed by / cannot be overcome, amplification with
N _-— 0 can result in the amplified fluctuations of the
signal field being dominant over the added vacuum noise
introduced by the losses (1 —¢&). In this way we can
achieve R —(G;) > R; and indeed for /— 0 we can recov-
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er the true SNR of the input [Ro(G,) — 1] even in the
presence of propagation and detection losses [13].

In summary, by coupling squeezed vacuum to the
internal idler mode of a nondegenerate parametric ampli-
fier, we have observed quantum-noise reduction in the
amplification process and have demonstrated an improve-
ment of signal-to-noise ratio for the amplified output rel-
ative to the usual case of a vacuum-state idler mode. Al-
though we have considered only the situation for which
the signal beam is limited by vacuum fluctuations and for
which the amplifier is operated in a linear (undepleted)
regime, it is of considerable interest to investigate as well
situations involving the amplification of nonclassical field
states with noise below the vacuum-state limit [6] and-the
operation of the amplifier in a nonlinear regime with de-
pletion [14]. In fact with squeezed vacuum coupled to
the idler mode, it should be possible to demonstrate that
manifestly quantum states can be amplified in the signal
channel with G > 2 (the so-called photon cloning limit)
while still maintaining nonclassical characteristics [9-
11]. Beyond its relevance to quantum amplification, our
experiment is significant in that it provides an example of
the alteration of the fundamental quantum fluctuations of
a system interacting with a squeezed reservoir [15].
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