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We consider the optical absorption and emission spectra of excitons in two-dimensional semicon-
ductors disordered through interface fluctuations. These spectra show a universal behavior exem-
plified by the fact that the offset of the spectral peaks (the Stokes shift) is proportional to their
linewidths over a range of at least 2 orders of magnitude. We introduce a topographical theory of
the exciton spectra which models such behavior in terms of statistical properties of a Gaussian ran-
dom function. The coefficient of proportionality between the Stokes shift and the exciton absorption
linewidth is found to be v = 2/v/671n2 = 0.553 by analysis and 0.6 by experiment.

PACS numbers: 71.35.4z, 78.55.Et

During the last decade, there have been many ex-
perimental studies of the optical properties of low-
dimensional semiconductors. In particular, a large body
of experimental work describes absorption and lumines-
cence spectra of samples in which excitons are confined in
thin sheets of one material which form two-dimensional
quantum wells (QW) when embedded within another ma-
terial of larger band gap. The prototypical system is the
GaAs QW in Al,Gaj_,As [1]. Several other combina-
tions are well characterized, including GalnAs wells in
GaAs [2], ZnCdTe wells in ZnTe (3], and ZnSe wells in
ZnS [4]. A common feature of these 2D systems is the
large inhomogeneous broadening of the exciton transi-
tions, compared with those in pure bulk materials, by
random fluctuations in the well width. An inverse square
dependence of the energies on the well width for sin-
gle electrons and holes in wells of infinite depth is a re-
sult of elementary quantum mechanics, while fluctuations
in well width are an inevitable consequence of crystal
growth in finite time. A theory of exciton line broaden-
ing in terms of monolayer fluctuations has been devel-
oped from the work of Weisbuch et al. [5], in particular
by Singh, Bajaj, and Chaudhuri [6], although the prac-
tice of inferring microstructure from luminescence line
shapes has recently been criticized by Warwick et al. [7].
However, there is general agreement that the linewidth
provides a “rough and ready” indicator of sample qual-
ity. A further feature of QW spectra is the shift of the
peak of the emission spectrum below that of the absorp-
tion or (more usually) excitation spectrum. This “Stokes
shift” is also widely used as a negative indicator of sample
quality.

In this Letter, we introduce an elementary treatment
of the optical spectra and of the Stokes shift in terms
of a topographical model of the exciton energy distribu-
tion. We choose to ignore the detailed statistics of the
microstructure of QW samples in favor of a general the-
ory: the justification of this approach is as follows. Fig-
ure 1 compares the absorption (solid curve) and emission
spectrum (dashed curve) of a ZnCdTe-ZnTe multiple QW

sample [3]. The absorption is dominated by a large peak
due to direct creation of excitons (hydrogenically bound
electron-hole pairs). The luminescence peak is due to
the recombination of some of these pairs. Similar ex-
amples abound in the literature. Figure 2 summarizes
data from many such experiments [8-14] by plotting the
Stokes shift against the linewidth (full width at half max-
imum) of the exciton absorption peak. We show that the
striking near universality of the line shapes and shifts
can be understood quantitatively by using a very simple
model involving the topography of a Gaussian random
function.

The inhomogeneous broadening is due to two types of
disorder: fluctuations in the widths of the layers of lower
band-gap material, and substitutional alloy disorder. We
assume that the former effect is dominant: Evidence sup-
porting this assumption comes from the fact that the in-
homogeneous broadening in multilayers (typically a few
tens of meV) is usually much larger than that in com-
parable bulk alloys (typically a few meV). The random
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FIG. 1. The experimental optical absorption (solid line)
and emission (dashed) spectrum of a ZnCdTe multiple QW,
showing the Stokes shift S and absorption half-width W.
(This diagram is reproduced with permission by the author
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FIG. 2. A representative selection of data from the liter-

ature [8-14] compares values of S and W. The solid line has
a slope given by the theoretical estimate v = 0.553.

fluctuations in the widths of the potential wells cause a
random variation in the energy of an exciton as a func-
tion of position in the plane of confinement, due to varia-
tions in the confinement energy. The energy E(z,y) of a
stationary exciton at position (z,y) contains a contribu-
tion K /LT)2 due to confinement in the z direction, where
w(z,y) is the well width averaged over the spatial extent
of an exciton centered at (z,y). Because of the random
fluctuations in the well width E(z,y) can be modeled by
a random function. We assume that the effective well
width @(z,y) has fluctuations over a length scale which
is large compared to other relevant dimensions such as
the size of the excitons: The good agreement between
our theory and experiment will provide strong evidence
supporting this assumption. Short-ranged fluctuations of
the well width, on length scales smaller than the exciton
radius, are suppressed because of the averaging over the
range of the exciton wave function. The fluctuations in
E(z,y) are therefore dominated by the long-ranged fluc-
tuations in the well width.

We will model the fluctuations of the effective well
widths w(z,y) by a Gaussian random function. As well
as facilitating the mathematical analysis, this is physi-
cally well motivated because the fluctuations of the well
widths are the result of uncorrelated random events in the
deposition of the multilayers: the central limit theorem
implies that the sum of many random processes is Gaus-

N(f) = /_ e /_ &y /_ Ay P(£,0,0, foos fyus foy) D O(D) O(T) .

Here D = det(M) = fozfyy— f2, and T = tr(M) = fou+
fyy are the determinant and trace of the Hessian matrix
M of the function f, and ©(z) is the unit increasing step
function. The step functions are used to select regions
where both eigenvalues of M are positive, implying that
the stationary point selected by setting f, = fy, =01is a
minimum.

We now consider how to evaluate this density of min-
ima for a Gaussian random function with isotropic statis-
tics. We can assume without loss of generality that the
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sian distributed. If the fluctuations 8w of the effective
well width are small compared to its mean value (0), the
fluctuations §E = —2K&w/(w)® of the exciton energies
E(z,y) are proportional to éw, and therefore also Gaus-
sian distributed. We will assume a Gaussian distribution
of the exciton energies throughout this paper.

The probability of creating an exciton is independent
of position, implying that the absorption peak will be
proportional to the probability distribution of the func-
tion E(z,y). Most exciton absorption spectra, such as
that of Fig. 1, can be fitted reasonably well by a Gaus-
sian curve, providing experimental justification for the
Gaussian random function model. The Stokes shift of the
luminescence peak is due to the exciton losing energy by
excitation of phonons before it decays. Because the exci-
ton lifetimes are much larger than the relaxation time for
emission of phonons [15], we assume that the exciton will
have relaxed into a local minimum of the potential en-
ergy function E(z,y) when it decays. The luminescence
spectrum therefore reflects the distribution of heights of
local minima of the Gaussian random function E(z,y);
in this Letter we assume that the luminescence spectrum
is proportional to the unweighted distribution of heights
of minima. A more detailed discussion of the model, to-
gether with a more refined analysis, will be published
elsewhere [16].

The problem of counting minima of Gaussian random
functions of one variable was considered by Rice [17] in
an analysis of electrical noise. An extension to count-
ing stationary points of a two-dimensional function was
described by Longuet-Higgins [18,19] in the context of
studies of the surface of the ocean. We now extend
Longuet-Higgins’ calculation to obtain the distribution
of heights of minima of a Gaussian random function
f(z,y). We assume that the joint probability distribution
P(f, fy fys fzay fyy, foy) Of the function f, its first deriva-
tives fp = 0f/0x, fy = 0f/dy, and its second derivatives
fazs fyys foy at a given point (z,y) is known. Let N'(f)df
be the number of minima of f(z,y) per unit area with
the height of the minimum between f and f + df. By a
simple adaptation of the arguments leading to equation
(2.4.13) of Ref. [18], we find the density of minima with
height f can be written in the form

1)

mean value of the function is zero. A Gaussian random
function of two variables f(z,y) with mean value zero
can be generated by convolution of a white noise func-
tion W(z,y) with a smoothing function F(z,y):

few = [ b / T dr dy Flz -y —y) W(y).
()

The white noise function has the properties (W (z,y)) =
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0, (W(x,y)W(z',y")) = 6(x—z")6(y—y’), where the angle
brackets denote either an ensemble or a spatial average.
In the context of the problem considered here it is natural
to assume that the statistical properties of f(z,y) are
isotropic: this can be obtained by choosing the smoothing
function F to be a function of 7 = (22 4+ y?)1/2 only, i.e.,
F(z,y) = F(r).

In order to utilize (1) we will require the joint prob-
ability distribution of the function and its first and sec-
ond derivatives. A standard result shows that the joint
probability distribution of a set of NV correlated Gaussian
random variables (X1, ..., Xn) = X is given by

P(Xy,...,Xn) = [(2m)Ndet(C)]V?
x exp(—3XTCX), (3)

where € is the covariance matrix, with elements Ci; =
(X;X;). We can assume without any loss of generality
that (f) = 0, (f?) = 1, (f2) = (f2) = 1: these con-
ditions can always be satisfied by scaling f, z, and v,
respectively. It is convenient to choose the elements of
the vector X = (X1,...,Xe) in (3) as follows,

in which case, after some elementary calculations, we find
that the covariance matrix C takes the nearly diagonal
form

1 0 0 -1 0 O
0 1.0 0 OO
=, 0 01 0 0O
C= -1 0 0 22 0 O}’ ()
0 00 O a O
0 00 O O a

where we have written a = (f2,), and used the assump-
tion of isotropy. Note that D = X? — X2 — X2 and that
T = 2X4, so that the region of integration selected by
the step functions in (1) is a cone in X4, X5, X space,
with vertex at the origin, with its principal axis along the
X4 axis. In the X, variables, only X; = f and X4 = %T
are correlated, and their joint distribution function is

e=1*/2 exp [_ (f+X4)2] '

1
X = o a1 20a—1)

6
X1=f Xo=fz, X3=fy7 X4=%(fm:c+fyy)’ (4) ( )
X5 = %(f:w — fyy), X6 = foy The density of minima is therefore
N(f) = _1_ /Oo dR p(f R)// dz dy (RZ _ g2 _yz) e~ (@*+y%)/2a )
(27)2a Jo ’ A )

where A is the disk z2 + y2 < R2?, and for clarity we have changed the names of X4, X5, X¢ to R,z,y. The integral
can be evaluated analytically using some results from Gradsteyhn and Ryhzik [20]: The result is

—3af?

N(f) =

(2#)2\}2a =1 [ - f;r;f—al_ - ex"0(2(3a - 1)>erfc(\/2(2& - 1()1(3a — 1)f)

f —af?
—3V2r(2a —1)(f% - 1)eXp(_f2/2)erfC<m> —(2a-1)f exp(za — 1)} , (8)

where erfc(z) is the complementary error function [21]. |

The zeroth, first, and second moments of (8) are

8/
Mo(o) = 22, () = — X
Mota) — L (1301 ®)
2(‘1)'—%( 3\/§ )

The probability distribution of the heights of minima is
obtained by dividing (8) by My and the mean u(a) and
variance V(a) of this distribution take the surprisingly
simple forms

4

P’(a) == ,————371'0 )
(10)
V(a) =1+-(1;<\/_—§——%).

The distribution of heights of local minima therefore de-
pends on the smoothing function F(r) (or equivalently,
on the correlation function or the power spectrum of the
random function) through a single dimensionless param-

eter a = (f2,)(f?)/(f2)®. We must now consider the
physics of the problem in a little more depth in order to
obtain an estimate for a.

It is clear that surface diffusion plays an important
role in the growth of semiconductor multilayer samples
of good quality, because a random deposition of atoms
could never produce structures in which the well widths
are defined to the monolayer accuracies obtained in the
best samples. Equation (2) provides a simple model of
the role of surface diffusion in smoothing out irregulari-
ties of the layers: W (z,y) models the initial, highly ir-
regular, pattern of surface deposition, f(z,y) is the final
smoothed layer width, and F(z,y) is the diffusion kernel,
which is Gaussian. This simple model therefore suggests
the use of a Gaussian smoothing function, which implies
that a = 1.

Equations (8)—(10) were checked by means of a nu-
merical simulation using a Gaussian smoothing function
F(r). This simulation used a discretization of the inte-
gral relation (2) for generating a Gaussian random func-
tion; the value of the function f(z,y) on a lattice point
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FIG. 3. (a) Theoretical distribution of heights of minima
(8) for a = 1, compared with numerical simulation. (b) The
theoretical distribution is plotted along side the Gaussian dis-
tribution of the function: These functions simulate, respec-
tively, the luminescence and absorption peaks illustrated in
Fig. 1.

(z = né,y = mé) is given by
fnm = 62 Z Z F[(n ot n’)é, (m — m’)&] Wn’m’ y

n’ m'

(11)

where the W,,/,,,» are a set of uncorrelated random num-
bers with mean value zero and unit variance, and the lat-
tice constant is § < 1. We used a Gaussian smoothing
function F(z,y) = (1/m)e~(=*+¥*)/2 With this choice of
F, we have (f?) =1, (f2) = 1/2, and a = 1. We regard
fnm to be a minimum if it is less than the values of f at
the eight nearest lattice points. The data in Fig. 3(a)
show the results of a simulation in which the grid spacing
was 8§ = 1/4 and a total of 2 x 108 function values were
computed, of which 5672 were found to be minima; the
expectation value is 5743. The distribution of heights of
minima shown in Fig. 3(a) fits the analytical curve very
well: the mean and variance of —1.3104 and 0.7037 are
in very good agreement with the theoretical values found
by substituting a = 1 into Eq. (10). The distribution
of heights of minima is plotted for a = 1 together with
the original Gaussian function in Fig. 3(b): The similar-
ity to the experimental excitonic absorption and emission
curves is striking.

We finally obtain a numerical comparison with exper-
iment by calculating the ratio of the Stokes shift S to
the absorption full width at half maximum W. The con-
stant of proportionality v = S/W is determined using
the mean value of the distribution of heights of minima,
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given by (10), as our estimate of the Stokes shift: we
find v = 2/(6mIn2)Y/2 when a = 1. This constant has
numerical value 0.553, while the best fit of a straight line
to the experimental values shown in Fig. 2 gives 0.60.

In conclusion, we have characterized a near-universal
relationship between the excitonic absorption and emis-
sion spectra of two-dimensional semiconductors. We have
shown that a satisfactory account of this relationship is
obtained from a consideration of purely classical local-
ization of excitons in the minima of a plane Gaussian
random potential. The comparison presented here as-
sumes a Gaussian spatial correlation function, but other
physically reasonable forms for the correlation function
give similar values for vy [16].
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