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Self-Amenity of Multiplicity Fluctuation in the Phase Space of Multiparticle Production
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It is argued that, accounting for the anisotropy of phase space, the local fluctuations of multiplicity in

high energy multiparticle production are self-affine rather than self-similar. Evidence is given con-
firming self-affinity in phase-space distributions. A method is proposed to extract the characteristic pa-
rameter of self-affinit, the Hurst exponent, from the experimental data iteratively.
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The study of multiplicity fluctuations in decreasing
phase-space intervals in high energy multiparticle produc-
tion using the method of factorial moments was proposed
a few years ago [I]. It is expected that ffuctuations of
nonstatistical origin ("dynamical fluctuation" or "inter-
mittency") may be present and the distribution in phase
space may possess a fractal structure [2]. Until now, it
has generally been believed that these effects should be
observed in a higher-dimensional analysis [3] instead of a
one-dimensional (rapidity) analysis. However, as is well

known, the phase space in multiparticle production is an-
isotropic, as indicated by the name "longitudinal phase
space" first introduced by Van Hove [4] in 1969. Thus a
basic question is: What is the influence of the anisotropy
of phase space on nonstatistical fluctuations? In this Let-
ter this problem will be discussed in some detail.

Recently, ffuctuations in azimuthal (tb) distributions
have aroused some interest [5] in connection with the
possible existence of jetlike (tower) or ringlike (wall)
structures. However, a more careful study [6] shows that
such structures are mainly due to statistical fluctuations,
having no essential significance. For simplicity, it is
reasonable to neglect the azimuthal distribution first and
study the multiplicity fluctuations in two-dimensional
phase space (pt~, p&) or (y~~, lnp&) or the corresponding
transformed variables [7]. In a two-dimensional analysis
the variables chosen in different directions should be con-
sistent with each other. There are reasons to believe that
the variables (y~~, lnp&) are more relevant [2]. In this
Letter we will concentrate on the formulation of a
method for treating the anisotropy of phase-space fluc-
tuations and leave the problem of variable choice for fur-
ther study. Therefore, we will in the following use xt~, x&
to denote the variables adopted in the two phase-space
directions.

The usual procedure for analyzing higher-dimensional,
in particular two-dimensional, intermittency is to divide
the corresponding phase space subsequently into subcells
by shrinking equally in each dimension. This, in the
language of fractal geometry, corresponds to self-similar
fractal structure [8]. However, the phase space in high
energy multiparticle production is anisotropic. The longi-
tudinal momenta p~~ are usually large, bounded only by
energy-momentum conservation, while the transverse

where p; z is the probability for a particle to fall into the
i,jth cell in (x„xb) space. The subscripts a and b are
used to denote the two different phase-space directions
—longitudinal and transverse. C~(6x„8xb) describes the
dynamical fluctuations of particle distribution in two-

dirnensional phase space. It can be obtained from the ex-
perimental data by the method of factorial moments [1].

The self-affine transformation is defined as Bx, 6x,/

k, ; 6xb 6xb/Xb, with X, ~ Xb. The shrinking ratios in

this transformation are characterized by a parameter

H =ink, /Inkb (0~ H ~ 1), (2)

called roughness or the Hurst exponent [8]. If and only if
the shrinking ratios in the two directions satisfy Eq. (2)

ones p& are limited to small values with an average of
0.3-0.4 GeV/c by a production mechanism which is in

some way still unknown at present. For this reason, we

cannot simply expect the fluctuations or scaling properties
to be the same in both directions. It is more reasonable
to assume that the scaling behaviors in the longitudinal
and transverse directions are different.

Our present case is very similar to the three-dimen-
sional space of landscape, where the vertical direction is a
special one due to the existence of gravity, which causes
the vertical (or altitude) variations of landscapes to be
scaled differently from the horizontal ones. According to
Mandelbrot [8], when some given patterns are scaled
differently in different directions (i.e. , scaled anisotropi-
cally), they are called self-affine fractals. Thus, the
anomalous scaling of landscape is self-affine in the verti-
cal (z, x or z,y) plane, and is self-similar in the horizon-
tal (x,y) plane. In this terminology, the phase-space
structure in high energy multiparticle production should

be self-aSne in the plane consisting of the longitudinal
and transverse directions while self-similar in the trans-
verse plane. In the following we will concentrate our dis-

cussion on the evidence of self-a%ne property between the
anomalous scaling of longitudinal and transverse direc-
tions and on the method for its experimental observation.

We choose the self-aSne function for multiparticle
production as

C, (ax. , axb) =g(pf, ) g(p;, ,)',
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FIG. l. (a) The calculated results for the one-dimensional
moments C2', C2 as functions of the number M of subinter-
vals. (b) Na22 results of one-dimensional factorial moments F2
in longitudinal y and transverse pT directions and of two- and
three-dimensional factorial moments with isotropic shrinkage of
phase space. Data are taken from Ref. [12].

with a particular H value, the function Cq(8x„6xb) will

have a well defined scaling property:
~(a) ~(b)

Cq(6x Sxb) lo ) b Cq(l bx Xb6xb)

In this sense, it is the Hurst exponent H that character-
izes the self-affine property of C~(6x„6xb).

Let us examine two special cases: H =0 and H =1.
(1) For H =0, X, =1, Xb =X&1, which means that 6x,

is constant, the function cg(8x„8xb) depends only on one
variable Bxb. In this case, the scaling property exists in

one dimension C~(6xb) =k 'C~(X6xb), and lnC~ vs lnMb

(Mb =Xb is the total number of subintervals) should
strictly be a straight line. We already know from experi-
mental data [2] that this is not true; cf. Fig. 1(b); So H is

not zero.
(2) For 8 =1, k, =Ab =X, self-affine reduces to self-

similar. If this is the case, lnCq vs lnM (M=K "is the
total number of subcells) should be a straight line in a
two-dimensional analysis with isotropic shrinkage of
phase space. It seems that the experimental data [2] do
not support this possibility either. The present available
data on the lnCq vs 1nM curves in two- as well as three-
dimensional analysis are in general bending upward; cf.
Fig. 1(b). (The y-p& curve in the figure is bending up-
ward after lnM =2.) So H is not equal to unity either.

Since both one- and two-dimensional self-similar evolu-
tion are not good candidates for a description of mul-
tiparticle production, the next possibility is two-dimen-
sional self-affinity. In order to check this, we have to con-
sider what phenomena are expected to be observed in the
self-affine case and how to extract the Hurst exponent,
characterizing the self-affine property, experimentally.

In order to get some hints for answering these ques-
tions, we have constructed a two-dimensional self-affine
random cascading model. First, take a two-dimensional
phase-space region hx, h, xb and divide it subsequently
with the subdividing ratios X, and kb equal to two in-

tegers, respectively. The probability for a subdivision is

taken to be

1+ar;J

g,'=, g,"=,OOO1(1+ ar„)
(4)

where a is the parameter of fluctuation strength, 0 ~ a
~ 1; r;~ is a random number in the interval [ —1,1]. The

w;~ as defined in Eq. (4) have the following properties:
(1) The probability is normalized to 1 in each subdi-
vision; (2) the possible values of w;~ are symmetric with
respect to different values of i,j; (3) the smallest and
largest possible values of m;J are 0 and 1, respectively.
After v steps, the probability in a subcell is p;„J'„

(i) (2). . . (V) V VJ+)++IJw I&ere&'=1. , p, j
Using this model, we have made a Monte Carlo (MC)

simulation for a self-affine cascading process up to v=8.
For simplicity, we have taken X, =2, kb =3, a =0.3. The
data sample thus obtained is then used to calculate the
various moments. The results of one-dimensional projec-
tion in both the a and the b directions are shown in Fig.
1(a). The two curves are distinct, reflecting the anisotro-

py of the two-dimensional space in consideration. In Fig.
1(b) are shown the experimental data from NA22 on the
factorial moments in longitudinal (y) and transverse (pT)
directions for comparison. Using our MC sample we
have also calculated the two-dimensional moments by iso-
tropic shrinkage of the space (self-similar analysis, i.e. ,
self-affine analysis with H=1). The result is shown in

Fig. 2 as a solid line. It is not straight but is bending up-
ward, giving more evidence for the self-affinity with H&1
of the sample in consideration. The result for a self-affine
analysis (anisotropic shrinkage of the space) with the
Hurst exponent H =In2/In3 exactly the same as in the
model is also shown as a dashed line in Fig. 2. It is
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FIG. 2. The calculated results for the logarithm of two-
dimensional moments C2' as function of the number M of
su bee 1 ls.
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straight of course.
Note that the inequality of the moments C~', Cq (or

the factorial moments Fq', Fq ) is not the main point. If
the fluctuations in the two directions were completely in-
dependent, the distinction between C ' and C (F '

(b)
' q

and Fq ) would be a trivial consequence of the anisotro-

py of phase space. The point is that the fluctuations in

the whole phase space are correlated as indicated by the
curvature of the log factorial moments versus lnM in one
dimension. How to describe the correlated anisotropic
fluctuation is not trivial. It is deeply connected with the
relative evolution of particle production in difTerent direc-
tions which results in a self-aIne fractal structure in the
multiplicity fluctuation in phase space. The Hurst ex-
ponent H is the appropriate parameter, describing the
self-affinity of the correlated anisotropic fluctuation quan-
titatively.

A very important question is how to extract the Hurst
exponent from experimental data. In order to answer this
question, let us write down the formulas for the one-
dimensional projections of C2 [9]:

2 y

C2' (8xa) =a2 I
—b2(z) w

Xb

V

C2 (~xb ) =a2 I
—b2

(b)

~Q
J

(5)

where C =(w )/(w& and the coefficients b2 and b2 are
greater than zero. Since (C„/k) ( I, both C2' (Sx, ) and

C2 (6xb) tend to saturate for large v. The saturated
values are C2 „. „=a2, C2,. „=a2, respectively. Defining(a) (b)

C2max C2 (~Xb )(b) (b)
(6)C(a) C(a)(g )

we see that

lnR =In(a2b2/a2b2) + (H ' —I ) lnM, , (7)

where M, =X,' is the number of subintervals in the a
direction. In deriving Eq. (7) the relation (2) has been
used. Thus, from the slope of the line lnR vs lnM, the
Hurst exponent H can be obtained. Note that Eqs. (6)
and (7) are based on Eq. (5), which is valid independent
of the concrete distribution of w and the exact values of

Therefore the Hurst exponent H obtained in this way
is largely model independent. The only requirement is

that in the phase-space structure there is fractality pro-
duced by an a-model-style cascade of independent vari-
ables.

The above method, however, cannot be used directly in

the analysis of experimental data. The reason is that
when deriving Eqs. (6) and (7) the values of the "number
of steps" v in both Eqs. (5) are assumed to be the same,
which is not straightforward to realize in experimental
data analysis. In order to solve this problem we propose a
self-consistent iteration method.

Rewrite Eqs. (2), (5), (6), and (7) as

C,"(M, ) =a, [1 —b, (C„') '/M, '~ ];
C(b) (M ) C(b) (M I/H) a&~ [I b&i(C2) v/M ]

C (b) C (b) (M I IH )2max 2 a

C," —C,"(M )

H ' = I+d lnR(M, )/d lnM, ,

(8)

respectively. In the zeroth approximation let H=H
= I and put it into Eq. (8) to get R(M, ). Then calculate
Eq. (9) at some fixed (unsaturated) value of M„ take the
result H ' as the first approximation of the Hurst ex-
ponent H; insert it again into Eq. (8), and calculate (9)
to get H;. . . . This procedure continues until two

neighboring values of H, say, H '+' and H ', are close
enough. Note that, with this value of H, lnR(M, ) vs

lnM, will be a straight line and the particular value

chosen for M, becomes irrelevant. In Fig. 3 are shown

the H values obtained in each step. It converges well to
the theoretical value H = In2/In3 =0.631.

The above model is a toy model. The real multiparticle
production processes are much more complicated. How-

ever, if the phase space in multiparticle production is

really self-aIne in the above-mentioned sense and the
phase-space variables have been chosen correctly, then

the proposed iteration method should be applicable.
Therefore, we would suggest doing the following in exper-
imental data analysis:

First, calculate the factorial moments F2', F2 in lon-

gitudinal and transverse directions and plot them as func-
tions of lnM.

Next, check whether the two curves obtained are dis-

tinct and whether they both become saturated at large M
when the experimental resolution in phase space is high

enough. If so, call the one saturated quicker as F2, the
other one as F2, and do the iteration procedure (8) and

(9). If the result converges to a certain value H, take it

as a characteristic parameter of self-a5nity in the pro-
duction process in consideration.

The anisotropy in phase space, which has been ob-
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FIG. 3. Calculated values (circIes) of the Hurst exponent H
as a function of iteration time. The dashed line is the theoreti-
cal value H =0.63l.
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served since the sixties, is deeply connected with the
mechanism of particle production. Up to now it has been
examined only with respect to the average momentum
distributions. In this Letter we have discussed its in-
fluence on the local fluctuations. It is argued that the
corresponding phase space should be scaled diAerently in
diA'erent directions, so that the phase-space structure is
self-affine. The distinction between the factorial mo-
ments in longitudinal and transverse directions and the
nonlinearity of the logarithm of the two-dimensional fac-
torial moments with isotropic shrinkage of phase space
versus lnM are evidence for self-a%nity. An iterative
method for extracting the characteristic parameter of
self-affinity, the Hurst exponent, from experimental data
is proposed based on the random-cascading a model. If
the iteration procedure really converges, it will be another
support for the self-a5nity of phase space in the above-
mentioned sense. The Hurst exponent thus obtained wi11

be an important parameter for describing the production
process in consideration.

Recently, the scaling of moments in the Q variable
has been observed [10]. It is probably due to the geome-
trical I]uctuations of interaction volume [11], while the
scaling of factorial moments in momentum variables
studied in this Letter is connected with the nonstatistical
I]uctuation in phase space [1]. Evidently, in the study of
both kinds of scaling the anisotropy of phase as well as
geometrical space should be taken into account. To ex-
tend the approach proposed in this Letter to the case of
interaction volume fluctuation is worthwhile. Research in

this direction is in progress.
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