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Structure of the Z Resonance and the Physical Properties of the Z Boson
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The proximity of multiparticle production thresholds means that the Z resonance is formed, not by a
single particle, but by a "multiplet" of distinct Z bosons diAering slightly in mass. The eAects that
these thresholds can have on the gauge-invariant pole expansion near the Z resonance are studied. It is
shown how this expansion naturally yields physical quantities from which the mass and partial widths of
the unstable Z bosons can be defined. The recent discussion on the definition of the Z boson mass is
reviewed and commented upon, stressing the distinction between the renormalized and physical masses.
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(1) Introduction In.—a previous publication [1],
henceforth referred to as I, it was pointed out that most
calculations of the electroweak radiative corrections to
the process e+e ff near the Z resonance contain
spurious higher-order gauge-dependent contributions. An
expansion of the full scattering amplitude about its pole
was proposed to correct the problem. In the same publi-
cation it was also noted that the value of the Z mass in
the on-shell renormalization scheme [2], the one current-
ly being extracted by LEP experiments, differs
significantly from the traditional one based on the posi-
tion of the pole of the scattering amplitude. This last
point was also discussed independently by Willenbrock
and Valencia [3]. It was subsequently shown [4,5] that
the usual definition of the renormalized Z boson in the
on-shell renormalization scheme is gauge dependent. The
above points have generated much discussion [6-101 and
a certain amount of confusion.

The gauge dependence of the scattering amplitude near
the resonance and the gauge dependence of the Z mass
in the on-shell scheme are distinct and unrelated matters.
The former arises as a consequence of the nonpertur-
bative character of the resonance. Resummations of
higher-order corrections that are necessary to describe
the resonant line shape are often done in a gauge-
dependent manner and are the source of the problem
which can be manifest in any renormalization scheme.
Adopting a gauge-invariant definition for the renormal-
ized Z mass does not automatically cure the problem of
gauge dependence of the scattering amplitude near reso-
nance.

Much of the discussion of the definition of the Z bo-
son mass is based on the mistaken notion that the on-shell
definition is, in some way, the fundamental or natural
one. The renormalized mass of any particle in any renor-
malization scheme is just a bookkeeping device that arises
as an artifact of perturbation theory. This can be seen by
comparing the on-shell and MS (modified minimal sub-
traction) renormalization schemes. The latter is a per-
fectly respectable scheme that is in many ways superior
to the on-shell scheme [11,12]. Assume that the on-shell
renormalized Z mass in 't Hooft-Feynman gauge is

Mz =91.17 GeV. Then for a top quark mass m, = 120
GeV and a Higgs mass MH =100 GeV, the renormalized
Z mass in the MS scheme is Mz =91.71 GeV [13] for
a 't Hooft mass of p =91.17 GeV. From an experimental
point of view, the numerical difference between these two
is huge. Yet both represent equally valid and workable
choices for the renormalized Z mass. The exact value of
Mz manifestly depends on the value taken for p, there-
by emphasizing the unphysical character of the renormal-
ized mass. As the renormalized mass is not a physical
quantity, it is not a priori required to be gauge invariant.
The renormalization conditions that one imposes in order
to fix the renormalized parameters are arbitrary to within
constraints imposed by the Ward identities. When not
tied to 5-matrix elements, they can be, and often are,
gauge dependent. The renormalized parameters obtained
from them can therefore also be gauge dependent but this
gauge dependence is just a manifestation of the well-
known renormalization scheme ambiguity [14] that
rejects the freedom available in the choice of perturba-
tive approximation to the exact 5-matrix element. The
gauge dependence coming from the renormalized param-
eters must cancel in exact S-matrix elements but does so
across different orders of the perturbation expansion.
DiSculties only arise when one attempts to identify the
renormalized mass as the physical mass. In that case one
is forced to introduce ad hoc definitions. That one can
work with gauge-dependent parameters is noted by Velt-
man [10].

While gauge invariance is not necessarily required for
renormalized parameters, this is an essential feature for
the parameters that one would like to ascribe as physical
properties to elementary particles and for 5-matrix ele-
ments that supposedly represent observable physical pro-
cesses. The pole expansion introduced in I both produces
exactly gauge-invariant 5-matrix elements near the Z
resonance and, as will be shown here, provides a means of
unambiguously identifying gauge-invariant physical pa-
rameters from which the mass and partial widths of the
Z boson may be defined.

Borrelli er al. [15] have discussed the value of ex-
pressing cross sections in terms of physical observables,
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such as masses and partial widths, rather than model-
dependent parameters, such as sin 0~, as a basis for
model-independent analyses of LEP data. The catch is
that the definitions of the physical mass and partial decay
widths of the Z boson are not clear cut especially at high
precision. The parameters adopted by Borrelli et al. are
themselves rather arbitrary although they can be related
to the physical parameters of the Z boson considered
here.

In this paper we review the gauge-invariant pole expan-
sion of I taking care to address certain technical points
that were not originally considered. In particular, the
presence of a multitude of multiparticle production
thresholds in the Z resonance region means that the res-
onance is comprised of a "multiplet" of Z bosons each
having its corresponding pole on an unphysical Riemann
sheet. The exact factorization of the residues at these
poles is explicitly demonstrated, which leads to a general-
ization of scattering amplitudes to the case of external
unstable particles and allows partial widths to be defined
for these unstable Z bosons. These quantities appear
naturally and explicitly in a pole expansion of the scatter-
ing amplitude.

(2) Gauge int arian-t pole expansion near the reso
nance. —We will be concerned with the process e+e

ff near the Z resonance. Far from the resonance,
the pole expansion given in I does not need to be invoked
because ordinary perturbation theory can and should be
used without Dyson summation. We shall limit ourselves
to considering two-particle final states. Hence QED
bremsstrahlung corrections are excluded along with their
associated I R-divergent virtual photon corrections. Such
corrections together form a gauge-invariant and unitary
set. All external fermions will be considered massless and
s and t will denote the usual Mandelstam variables,
s =(p, ++p, -) and t =(p, -+pf) . We shall be cavalier
in ignoring renormalization and thus the mass that ap-
pears here, Mo, is the bare mass of the Z . The one-loop
renormalization of the gauge-invariant pole expansion

was considered in Ref. [16].
The vector-boson self-energies and mixings all take the

form

H„,(q') = g„,— "," HT(q')+ ",' Ht. (q'),
q q

(2.1)

where p, v are Lorentz indices, q is the momentum
squared, and HT, Hq are the transverse and longitudinal
parts. For massless initial-state fermions, as assumed
here, only the transverse parts of the vector-boson self-
energies contribute.

The complete one-particle-irreducible (I PI) transverse
parts of the self-energies for the photon and Z are
denoted by H„~(s), Hzz(s) and the 1PI photon-Z mix-
ing by H~z(s) or Hzr(s). The complete IPI corrections
to the photon-e+e and to the Z-e+e vertices are
written V; „(s)[F(p,+)y„yt, .u(p, -)],and V; z(s)[F(p, +)

xy„yt, .u(p, -)l„respectively. Here u and t are spinor
wave functions and h'=L, R is the helicity of the electron
current. Similarly the complete 1PI photon ff and -Z ff-
vertex corrections with final-state fermion helicity h

are Vyf f(s) [u(pf) y„y&fv(pf)]f and Vzf f(s) [u(pf) y„y„f
xv(pJ)]f. The full IPI multiparticle exchange correc-
tions between initial and final states takes the form

8; f (s, t) [i (p, +) y„yt, .u(p, —)], [u(pf) y„ytft (pf)]f .

In what follows, the helicities and fermion currents will

not be written out explicitly. The given expressions may
be considered as form factors in definite helicity ampli-
tudes. These helicity amplitudes are generally sufficient
to construct any required S-matrix element including
those in which bremsstrahlung is taken into account.

Baulieu and Coquereaux [17] have given the general
form for the transverse parts of the dressed photon and
Z propagators and of the photon-Z mixing. Using
their results the complete scattering amplitude for the

L

process e+e ff is given by

s —M,' —Hzz(s)
A(s, t) = Vi (s) V»(s)

[s —Hr, (s) ] [s —M o
—Hzz (s) ] —H,'z (s)

H,z (s)+ v;,(.) Vzf (s)
[s —H,„(s)] [s —Mo —Hzz (s) ] —H,'z (s)

Hz, (.)+ v,,(s) v„f(s)
[s —II (s)] [s Mo Hzz(s)] H z(s)

s —H„(s)+ v,,(s) Vzf(s)+8(s, t) .
[s —H„(s)] [s —M o

—Hzz (s) ] —H,'z (s)
(2.2)

pieces collected with the result that

H,'z(s)
s —H„(s)

H,z(s)2 (s, t) = V;),(s) V.z(s) Vzf(s) +
s —H» s

V,,(s) V,f(s)
s —

H~~ s

Hzy(s)
s —H„(s)

s —M,' —H„(s)—

(2.3)

The first term can be split into a resonant and nonresonant part and the resonating
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Note that in order to obtain the exact factorization of the numerator of the first term in Eq. (2.3), it is essential that the
resonant piece of the photon propagator be included. It is convenient to localize the dominant behavior of the single
term with a simple structure. Hence we write

R(z (s& ) Rzf (s& ) Riz (s) Rzf (s) —R;z (s& ) Rzf (s& ) V;z(s) Vrf (s)
S Sp S Sp s —rl» s

(2.4)

in which

Riz(s) = V;„(s) + Viz(s) Fzz (s),ritz (s) i/2

s —rI» s

Rzf (s) =Fzz (s) Vzf (s) + V~f (s)&/2 rrz, (s)
s —rl» s

Fzz(s) is defined from

(2.Sa)

(2.sb)

Hz', (s)
s —M,' —rl„(s)—

s —ri»(s)
and sp is a solution to the equation

1

( )
(s —sp)

s, —M, —ri„(s,)— nz', (sp) =0
sp

—rIr„(sp )
(2.6)

lying near the physical sheet in the resonance region. It
should be emphasized that Eqs. (2.2)-(2.4) are exact
expressions for the scattering amplitude. They are
equivalent to Eq. (2.11) of I but here the factorization of
the residue is displayed explicitly. The structure of Eq.
(2.4) is remarkably simple being just a leading Breit-
Wigner resonant term plus a background that is regular
at s =s~. The pole position s~, the residue R;z (s~ )
Rzf(s~), and the background, comprised of the last

three terms in (2.4), are all separately and exactly gauge
invariant. They can be independently expanded as well-
behaved series to any finite order in the coupling constant
without introducing gauge dependence into the scattering
amplitude. Provided s is not too close to a production
threshold, the background can be expanded as a Taylor
series in s and then truncated at some order.

A large number of multiparticle thresholds lie in the
Z resonance region. For example the thresholds for
Z W+bbsc and Z 10(bb), along with a host of oth-
ers, sit densely under the umbrella of the resonance.
These thresholds are admittedly very weak but all are as-
sociated with a branch point that opens up a new unphys-
ical sheet. The solution obtained for Eq. (2.6) depends
on exactly where (i.e. , between which pair of thresholds)
one crosses the real s axis from the physical region to an
unphysical second sheet.

The question arises as to which of the poles, corre-
sponding to the many possibile solutions of Eq. (2.6), rep-
resents the "true" Z boson. In the resonance region, all
of the poles that can be reached by crossing the real s
axis from the physical region onto an unphysical second
sheet lie roughly the same distance from the axis and ex-
ert a roughly equal inhuence on the physics. None can be
attributed any special status. A manifestation of this is
that, given sufhcient experimental resolution, the reso-

hs~ = disc„-rlzz (s~ )
r

Sp= 2zi 1—
16m

(2.7a)

2
' 1/2 '

24m 2 2 2 2m&' —(pI. +pR) 1+
3 Sp

2 2
—(p. —p. )'

S

(2.7b)

that yields a separation in Ws of !6ps~! —6(100 MeV).
Here disc«IIzz(s~) is the discontinuity in Hzz(s) at s~
upon encircling the tt threshold in an anticlockwise direc-
tion [18]. The quantities pl. , pR represent the left- and
right-handed couplings of the top quark to the Z . Note
that there is a suppression both by powers of e and by the
velocity factor (1 —4m, /s~)'~ but that the separation
would produce easily resolvable effects at LEP.

The effect of thresholds on resonance peaks has been
studied by Bhattacharya and Willenbrock [19]. They
noted that near a threshold there will be two poles of
physical relevance and that two sets of mass data should
be quoted.

Given the known experimental fact that m& is consider-
ably larger than Mz/2 [20], the dominant splitting,
within the standard model, could come from a process
like Z Hff [21] for a suitable Higgs mass MH.
Suppression by powers of e and three-body phase-space
factors put the splitting generated by this threshold,
should it exist, beyond the resolving power of LEP. From
these considerations it follows that, because the leading
thresholds lie far below the resonance region, the position
of the pole that is reached by crossing the real s axis in

the resonance region is unique for present theoretical and
experimental purposes.

! nance is not being adequately described by a Breit-
Wigner function plus background corrections and one
needs to determine as many pole positions as the experi-
mental precision requires and allows. The Z resonance
can therefore not be considered as a single spectral line
but rather as a closely spaced multiplet. In effect the res-
onance possesses a fine structure.

An upper limit for the maximum separation between
components of the Z multiplet can be straightforwardly
estimated. Had the top quark had a mass m, —Mz/2, the
tt threshold would have been the leading one in the Z
resonance region. The difference between the solutions to
Eq. (2.6) on the Riemann sheet reached by crossing the
real s axis immediately below the tt threshold and that
reached by crossing immediately above is approximately
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0) The physical mass and partial decay widths of the
Z boson .—The quantity s~ appearing in Eq. (2.4) has
traditionally been used to define the mass and total width
of an unstable particle. It should be stressed that the
complex number s~ as a whole constitutes a physical
property of the Z boson. It is often split up into real and
imaginary parts in an attempt to define a real mass M
and total width I . Such definitions are purely matters of
convention with the two most common being

s~=M~ —iM~I t and s~=(M2 —iI 2/2) . (3.1)

There is no good physical reason to prefer one over the
other and the two definitions yield significantly diA'erent

numerical values. Thus the physical meaning of these
quantities is dubious especially when the width is large or
precision is high. In the case of the Z, Mi =M2 —8
MeV, I i =I 2+0.2 MeV, and Mi lies roughly 34 MeV
below the on-shell scheme renormalized Z mass in 't
Hooft- Feynman gauge.

The factorization of the residue at the pole (2.4) is a
manifestation of a general property of the scattering am-
plitude (see Ref. [22], p. 245). For stable particles it is
known that the factors are themselves scattering ampli-
tudes. For unstable particles the residue factors provide a
means of defining generalized scattering amplitudes with
external unstable particles that satisfy crossing and uni-
tarity relations [23,24]. The residue factors of (2.5) are
therefore gauge invariant by themselves and (2.5b) repre-
sents the amplitude for the process Z ff. Its magni-
tude constitutes a physical observable from which one

might choose to define the partial decay width of the Z
to massless fermions as

I z IJ=, , [(RzJ, (s )~'+~uzi„(sp))']. (3.2)
48tr sp

'I

Note that the above definition is not precisely the same as
the partial width that is standardly calculated. The
amplitude considered here is evaluated at the complex
momentum, s =sz, that corresponds to the unstable Z 's

being on shell. Most calculations of the partial width are
evaluated at some real s, normally the renormalized
mass. As was seen above, the renormalized mass is essen-
tially arbitrary and there is no fundamental real momen-
tum value associated with an unstable particle. The par-
tial width calculated in this way will depend on which ar-
bitrary momentum value one chooses and therefore can-
not be a physical property of the Z boson itself. Far
from thresholds the definition (3.2) is greater by a factor
of roughly I+I z/(8Mz) as compared to the standard
one evaluated at s =M~ and thus the difference is nor-
mally extremely small. Close to thresholds, however, the
standard perturbative calculation blows up due to the Z
wave function renormalization factor, Fzlz(Mz~), being
singular there [19,25, 26]. This problem is not present in
Eq. (3.2) because Fzz is evaluated at complex s~.

It would be very satisfying, but is not at all necessary,
if an exact simple relationship could be found between

the sum of the partial widths as given above and the total
width obtained by some decomposition of the position of
the pole, s~. Such a relation remains elusive. One can
conclude, however, that the total width defined in either
of Eqs. (3.1) is equal to the sum of the partial widths
defined from the residue factors, Eq. (3.2), up to terms of
relative weight 6(10 ).

The author wishes to thank P. LandshoA for stressing
the efrects that thresholds can have. Useful discussions
with R. Akhoury, A. Martin, and A. Mondragon are also
gratefully acknowledged.

' Present address: Randall Laboratory of Physics, Univer-
sity of Michigan, Ann Arbor, MI 48109-1120.

[I] R. G. Stuart, Phys. Lett. 8 262, 113 (1991).
[2] A. Sirlin, Phys. Rev. D 22, 971 (1980).
[3] S. Willenbrock and G. Valencia, Phys. Lett. 8 259, 373

(1991).
[4] A. Sirlin, Phys. Rev. Lett. 67, 2127 (1991).
[5] A. Sirlin, Phys. Lett. 8 267, 240 (1991).
[6] T. F. Treml and G. Kunstatter, Winnipeg Report No.

PRINT-91-0480 (to be published).
[7] B. F. L. Ward, Phys. Lett. 8 296, 209 (1992).
[8] 3. Ellis, in Proceedings of the Joint International

Lepton Photon Sy-mposium and Europhysics Conference
on High Energy Physics, edited by S. Hegarty, K. Potter,
and E. Quercigh (World Scientific, Singapore, 1992),
Vol. 2, p. 29.

[9] G. Passarino, in Proceedings of the Joint International
Lepton Photon Symp-osium and Europhysics Conference
on High Energy Physics (Ref. [8]), Vol. I, p. 56.

[10] H. Veltman, DESY Report No. DESY 92-076 (to be
published).

[I I] R. G. Stuart, Z. Phys. C 34, 445 (1987).
[12] G. Passarino and M. Veltman, Phys. Lett. 8 237, 537

(1990).
[13] B. A. Kniehl and R. G. Stuart, Comput. Phys. Commun.

72, 175 (1992).
[14] P. M. Stevenson, Nucl. Phys. 8203, 472 (1982).
[15] A. Borrelli, M. Consoli, L. Maiani, and R. Sisto, Nucl.

Phys. 8333, 357 (1990).
[16] R. G. Stuart, Phys. Lett. 8 272, 353 (1991).
[17] L. Baulieu and R. Coquereaux, Ann. Phys. (N. Y.) 140,

163 (1982).
[18] 3. C. Polkinghorne, Nuovo Cimento 25, 901 (1962).
[19]T. Bhattacharya and S. Willenbrock, Brookhaven Report

No. BNL-56481 (to be published).
[20] CDF Collaboration, F. Abe et al. , Phys. Rev. Lett. 68,

447 (1992).
[21] F. Diakonos and W. Wetzel, Heidelberg Report No.

HD-THEP-88-21 (to be published).
[22] R, J. Eden, P. V. Landshoff', D. I. Olive, and 3. C. Polk-

inghorne, The Analytic S Matrix (Cambridge U-niv.

Press, Cambridge, 1966).
[23] H. P. Stapp, Nuovo Cimento 32, 103 (1964).
[24] 3. Gunson, 3. Math. Phys. 6, 827 (1965); 6, 845 (1965);

6, 852 (1965).
[25] J. Fleischer and F. Jegerlehner, Phys. Rev. D 23, 2001

(1981).
[26] B. A. Kniehl, Nucl. Phys. 8357, 439 (1991).


