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Solitons on Oscillating and Rotating Backgrounds

Niels Grgnbech- Jensen
Theoretical Division, Ios Alamos National Laboratory, Los Alamos, ¹urMexico 875/5

and Department of Applied Physics, Stanford University, Stanford, California g$805

Yuri S. Kivshar~ ~

Institut filr Theoretische Physik I, Heinrich Heine U-niversi-ta't Dusseldorf, D $000 D-usseldorf 1, Germany

Mario Salerno
Department of Theoretical Physics, University of Salerno, I 8/100 Ba-ronissi (SA), Italy

(Received 30 September 1992)

We show that kink solitons may exist on top of a rotating background as localized objects if the
background dynamics is phase locked to a rapidly oscillating ac force. The result is demonstrated
analytically for the sine-Gordon model, showing excellent agreement with numerical simulations. In
the context of long Josephson junctions this phenomenon means that the well known Shapiro steps
in the current-voltage characteristics change into a set of the zero-field steps according to the number
of propagating Auxons.

PACS numbers: 03.40.Kf, 74.50.+r, 85.25.Cp

As is mell established in the literature, soliton bearing
models are very important in describing nonlinear dy-
namics of many physical systems in the one- and higher-
dimensional approximation, In order to describe interac-
tion with the surroundings, these models are often per-
turbed by external forces, dissipative losses, as well as
other types of perturbations (see, e.g. , Ref. [1]). Typi-
cally, these perturbations are considered to be relatively
small, and hence, the integrable model, having exact soli-
ton solutions, becomes nearly integrable, which implies
that the solitons maintain their essential characteristics
from the unperturbed system [2, 3]. This has been suc-
cessfully demonstrated for difFerent types of solitons un-
der the inHuence of weak perturbations. It has been
shown that applying an ac force to a damped envelope
soliton system may in fact compensate for the dissipation
and hereby maintain the soliton as a stable object [2, 3].
For topological solitons (kinks), small external forces (ac
or dc) give rise to stationary propagation in a damped
system [3—6]. Relatively small perturbations of the sys-
tem have also proven to cause more complicated dynam-

ics involving coexisting states of bunched kinks and non-
trivial background states [7]. But what happens with
solitons in strongly perturbed systems? Large amplitude
forces will have a dramatic inHuence and the nonlinear
system becomes highly nonintegrable showing decay of
topological solitons as localized objects [8].

The purpose of this Letter is to demonstrate, analyt-
ically and numerically, that very large perturbations of
a system do not necessarily prevent the existence of soli-
tons. We show that the solitons may have a predomi-
nant role as elementary nonlinear excitations, if the sys-
tem dynamics can be described by different time scales
characterizing slowly and rapidly changing values. We
have chosen the sine-Gordon (SG) model as a particular,
but rather general, example with numerous applications.
We show that a large amplitude, high frequency force
may phase lock the sine-Gordon field in an oscillating or
rotating state and hereby create a mechanism (an effec-
tive gravitation field) for supporting solitons (note that
for a high frequency driven system without spatial ex-
tension this is analogous to the Kapitza problem of the
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pivot modulated pendulum [9]). The present study is
physically relevant for, e.g. , long, but finite size, one-
dimensional Josephson junctions driven by a large am-
plitude, high frequency bias current. The main phys-
ical consequence of our results is that the existence of
localized 2vr kinks (magnetic fluxons) gives rise to the so-
called zero-field step (ZFS) like singularities around the
well known Shapiro steps [10] in the current-voltage (IV)
characteristics of the system with no spatial modulation.

We consider the perturbed SG equation given by [3]

p» —piq —sing = a.pq —il —csin At .

For a long Josephson junction, P describes the quantum
mechanical phase di8'erence between the two supercon-
ductors, defining the junction. The space dimension x
is normalized to the 3osephson length, and the time di-
mension t is normalized to the inverse plasma frequency
of the junction. Tunneling of quasiparticles through the
junction is described by the dissipative term n; the
bias current density (normalized to the critical current
density) forced through the junction is given by the dc
term g and the ac term e, where A is the normalized
frequency. Let us now assume that the system is of finite
length L so that the boundary conditions are periodic,

Q» —Qrq —Jr, (A) sin(Q —2kv) = nkA —rl + o.Qq,

(6)

AA sin = = o.AA cos = —e sin At, (7)

where the latter equation is derived for A2 )) 1. The
amplitude A of the fast oscillation is then obtained from
Eq. (7) to be

E'

Av'A2 + o.2
(8)

Making the substitution, @ = Q —2kv, it is clear that the
"slow" field 4 is described by the SG equation (6), where
the effective gravitation field JA, (A) (the Bessel function
of first kind, kth order) is determined by Eq. (8). The dy-
narnics of the field are then completely determined by the
separation into the diEerent time scales. We note that,
since the Q field obeys a simple perturbed SG equation,
we can apply all the results obtained in the literature
for SG dynamics directly on Eq. (6). It is important to
note that Eq. (6) is only valid if the short time-scale field
is phase locked, since this is the mechanism determining
the efFective gravitation field. Hence, Eq. (6) is valid only
for bias current densities g in the intervals

P(x = 0, t) = 2am+ P(x = L, t), (2) kAn —IJr(A)l & q & kAo, + IJr(A)l .

where n is an integer, denoting the number of trapped
2x-kink solitons. For these types of boundary conditions
the dispersion relation of the linear modes are described
by the discrete dispersion relation,

f
I

+1 (l =0, 1, 2, . . .).(2vr i
(3)

From this we find that as long as the driving frequency
is not too close to one of the resonances, u~, we can
avoid the spatially modulated linear modes. Similar ar-
guments can be made for open boundary conditions, but
for simplicity we have chosen here to consider the peri-
odic boundary conditions only. Note that if the system
is of infinite length the only way of avoiding the linear
modes is to assume that the system is discrete [11].Driv-
ing the system, Eq. (1), with a high frequency ac force,
we will separate the field into two time scales,

(4)

where ( is the short time-scale part, oscillating with the
frequency A, Q is the long time-scale part, and g is the
average frequency of rotation for the background field. In
this analysis we will keep only the fundamental frequency
A of the short time-scale part,

( = A sin ", = = At + v,

where v is a constant phase. Inserting Eqs. (4) and (5)
into Eq. (1) and assuming that the background field is
phase locked to the external signal, y = +kA, k being an
integer, we get the following equations for the separated
time scales:

As an example of how well Eq. (6) describes the dy-
namics of the strongly driven SG system in an oscillating
or rotating mode, we will study kink-soliton motion. In
order to study the steady state dynamics we will apply
the periodic boundary conditions, Eq. (2), on a finite size
system. The simplest possible analysis of a dc driven kink
is to look at the constant velocity properties. The kink
wave solution to the unperturbed system [left hand side
of Eq. (6)] is given by

4' = 2cram(QIJg(A)lp(W)(z —X)q ') + —(1+q),
(1o)

where o. = +1 is the polarity of the kink, X is its position,
p(W) = (1 —W ) ir2 is the inverse I orentz contraction,
TV = X being the velocity of the traveling wave, and
q = +1 denotes if the ground state is 0 or vr. Here am
denotes Jacobi's elliptic amplitude depending on the el-
liptic modulus q (0 ( q ( 1), where the modulus must
obey the condition

~( )
Lv'IJi:(&)I

(w)2n

The wave equation (10) describes a propagating sequence
of n localized kinks. As a measure of the localization we
define the compression e as

(12)

From Eq. (6) we easily find the steady state velocity of
the soliton(s) to be given by

3182



f u

a ~ y

~ ~ ~

0

~ a a

0 ~

r ~

0 y ) I
~ y ~ a ~ ~ ~ ~ ~ a ~

~ ~ y 0 f a

Q ~ f a

N ii &iiiijiijj&j& jjii& Njjiii ~ 14 i&ij&&&Nj&&jii&&ii jijiiijjiijjujjj ii'

u ll Hlluuult Hul t H I H Hluuluutltuu u Hluttu&IN(ttla&&44&ijjj&j&sua&i
'

IH Huuuuuluuutuul I Hutuuulu(N(u Hluullu(NIN(lt NINI

44&~ 1&14&&HI ~1&&NISI&i&&IN& I N&N&114&l ~ i&44&4111& N&&SNNN j&NPI II&I N tt
jj & N ~

jjj IN&i&ii&4&&i&iIi&4&a Isj jj i j jijijs&i&&ij& ~&uj&&jjljjj&&jj&jjli"'

tl liuuulu\lutult tH I ulltuulttt I tl( u luul( i&11111 111 14

HIIHHIHNHNHI Htl Hlluuut(ltl Htt I IH(uuu lu)ut4 I &4' (j

~ ~I&14&NN&111111111~I 414& ] &ii ~SIN&sji&i11&44&N&4&jui& ~1«I&IN I(Ill u u

ii&1111&N&1111&11&l&~ 1&1 I~ 14 NN&11111414114&ji ji jjjj iii&1

IHI tululuutuuu HI I Hulllllutlluul tl Hl JNNIIIN&& ~ ~&NN&il 4\i'Nj

1tu t Hluuuuul lu I Hu Nuul Iltu IN H ul ()I I Hu H ltl

u Hluuultluuullll I Ittuuuuul Hltuuuu I tu Hut I t

lljjjjjjjjjj&4&j&jjj& I I jjjj'jj jjj jjr is'llj jjijji'ij""' " :- ' ~
.

Huuuuuul Itl I H Hulu'I(NHNltl Hu tu I lttu(ut& tt Nltu(

14111&NN&&141 liji&&j( is &I
141111&i&N&4&j&4&N&N&t&SNIHH&tuuut u uu(

jiiii&iiiiij iiiiijjii jijijiiijijii&1144«441
uulutltu cl(HN I Huuuluultltn Huulu 1&NNS Is&N&41114&~4& &j ~ i ~

uulttuuuttulul HI HHHI&uuult ill u(uu( IHHNI Htul Huuttu I I

N&&N& ~«a&a&4&i &14& NS«4&N&&141 I 11 &N
Hullu(uuuuuut (ul I u

Hluuluuuu I Ntuuuuuul lu HI|iiujj« ~ 44&4 ~« ijiiijiijii''i" 'j&" «ii'

Huul&HI Hl ultulultul H Nuu&ltu
Httt(NIHI&H Httt( Hu I I I IH

Iulluul ~ luuultu Il(NHI
'iiiiijjijjjjjjejjjjiiiii iejjj i i ijjjiiji

tltuuuu/ I uuuutuuuuul I ttu)IN&4(NINII uu tttuuutulftslt It I(tl I

0 4«&j&4)&jj,l jj j« i&i&4&A&44&sjaj&& 1444&((((&uuull ul I HHI(lu tu uu Ilt

a

0 ~

a ~

~ ~ a ~ ~ ~

a y a ~

~ ~

~ a ~ Sl y ~ ~

a ~ ~

~ ~

~ ~ ~

~ a a y

~ ~

4

~ a

~ ~

) a

a

~ ~ a ~

~ ~

j a a

~ ~

a

a I) yy
a y

~ ~

~ a y

r ~

~ ~ N

(I ~ ~ ~ (]

I g ~ ~ ~

~ ~ ~

r ~ g f a a ) ~ ~ g

~ ~ y 0 ~ y r ~ a ~

r ~ a

a u
r a

~ a a a ~ a a

~ &l
a

~ a ~

~ H H
a a

~ ~ a

a

0 y ~

a ~

0

~ a ~

r ~

a

a

~ a

's )

f a a a

0 lf H I iP r

a a

0 ~

I H y

a e

0 0 ~

a f ~

a

0 N ~

~ 0 r
H

(I

) 0 a ~

~ . I ~ - eo ~ f a ~ k

0 00rff
~ a

~ ~

~ ~ ~ ~ N ~

a a a 0 r 0 ~

4 0

0 ~ ~ ~ I I 4&

a ~ a

0 ~

a

~ a

a ~ ~ f 0

a

0 ~ r ~ ~ 0 ~ H 0

0 ~

0 ( r 0

r ~ ~ 0

~ r f 0 0 a

a a I fOIO

44 O 0 ~ a a

u
S

~ ~ a a a 0 0 ~ 0 0

~ 0 ~ a

r ~ a a a a a

~ ~ j a a a

~ ~ ~ 0 ~ 0 0 ~ a

r ~ a a ~ 0 ~ ~ ~ r ) ~ ~



VOLUME 70, NUMBER 21 PH YSICAL REVIEW LETTERS 24 MAY 1993

0 I I I I ~ I I I I

k=1

k=3
+
+
+

k=4

20

FIG. 2. The normalized IV curves for the system with the
parameters a = 0.1, I = 10, e = 500, 0 = 12.9, and n = 0, 1
(the case n = 0 is the vertical Shapiro step, and n = 1 is
the zero-field step like curve). The insets show details of the
curves for A; = 1 and A: = 3. Note that there are both solid
[the results of numerical simulations on Eq. (1)] and dotted
curves [the results of the analytical treatment, Eq. (14)]. Note
that the agreement between numerical and analytical results
is close to perfect —the dotted and solid curves are almost
overlapping.

localized object. This feature is visible in Fig. 3, where
we have drawn a horizontal line Ic = 2x/I denoting the
compression of the unlocalized state.

In conclusion, we have demonstrated that a sine-
Gordon system with a rotating background may sup-
port localized kink solitons if the background dynamics
are phase locked to a rapidly oscillating ac force. This
result, predicted by analytical arguments based on the
method of separating the dynamics in long and short
time scales, shows that the localization of the kink is re-
lated to the characteristic phase of synchronization and,
thus, the kink dynamics in the long time scale depend
strongly on the parameters in the short time-scale regime.
The analytical results are confirmed by direct numerical
simulations, showing excellent agreement with the theo-
retical predictions. For the theory of the Josephson junc-
tions the above results mean that the well known vertical
Shapiro steps in the IV curve of a junction coupled to an
external ac force imply a localization eKect, which makes
the system able to support stable propagation of local-
ized Huxons. This propagation affects the IV curves so
that the usual Shapiro steps change into zero-field steps

FIG. 3. The compression r as defined in Eq. (12). System
parameters are as in Fig. 2. The solid curves are the analyt-
ical results and the markers are the corresponding results of
numerical simulations.

according to the number of propagating Buxons.
We note finally that long Josephson junctions are well

within current fabrication capabilities. Experiments, ver-

ifying the results in this paper, should therefore be easy
to perform.
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