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We present a theory of stripe domain structures in a thin ferromagnetic film with easy-axis mag-
netic anisotropy and long-range dipole interactions, for a wide range of temperatures below the
reorientational phase transition. Spatial anisotropy generated by the exchange energy within do-
main walls pins the orientation of the domains. The domain structure can be described as a smectic
liquid crystal with positional order destroyed by both thermal meandering of domain walls and by
proliferated dislocations. The theory is in good agreement with experiment.
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Recently, the physical properties of thin ferromagnetic
films have been the subject of intense investigation, in
part due to the prospect of using such films as high-
density storage devices. Such ultrathin films have un-
usual properties. Fe and Co on Au or Cu substrates have
Curie temperatures exceeding room temperature. More-
over, the magnetization of Fe/Cu(100) and Fe/Ag(100)
films has been found to align perpendicular to the film
at low temperatures and parallel to the film at high tem-
peratures [1].

The perpendicular magnetization at low temperatures
can be understood in terms of perpendicular anisotropy.
Néel [2] pointed out that such anisotropy is generated by
boundaries, a conclusion confirmed by recent numerical
calculations [3]. On the other hand, for a thin slice of a
ferromagnet with parallel boundaries, the dipole interac-
tion favors an orientation of the magnetization parallel to
the boundaries, by an amount proportional to the width
of the slice. Hence, since the perpendicular anisotropy
at the boundary is independent of the thickness, one can
expect a perpendicular magnetization to appear only in
very thin ferromagnetic films.

Pappas et al. (4] have performed experimental stud-
ies on the phase transition from perpendicular to paral-
lel magnetization (reorientation phase transition, RPT).
They find, in addition to the parallel and perpendicu-
lar magnetization states, a temperature interval of about
20 K between the disappearance of perpendicular mag-
netization and the appearance of parallel magnetization.
Pescia and Pokrovsky [5] have proposed that the RPT
is the result of a competition between the surface mag-
netic anisotropy and the dipole forces renormalized by
strong thermal fluctuations (see also the discussion [6]).
Earlier we conjectured that the regime where the magne-
tization disappears, observed by the authors of [4], can

H= %F/[v -n(x))? d*z — )\/nz(x) d*z

[n(x) - n(x)]? - 3{v - [n(x) — n(x')]}*

be ascribed to a domain structure penetrating the film
[7]. The important role of domains was anticipated by
the authors of Ref. [4].

The present paper focuses on the phase with perpen-
dicular magnetization. Yafet and Gyorgy have consid-
ered [8] this phase at low temperatures, finding that the
long-range dipolar interaction makes it unstable with re-
spect to the formation of a stripe domain structure. Al-
lenspach, Stampanoni, and Bischof [9] discovered orien-
tationally disordered domains in a film of Co on Au(111)
using electron microscopy. More recently, Allenspach and
Bischof have found much more ordered domain structures
in a system of Fe/Cu(001), for which the RPT occurs
at Trpr = 288 K. They find well-defined stripes clearly
aligned along the (100) axis of the substrate, but disor-
dered positionally [10]. Domains have been observed in
an interval between 230-280 K, with a period in a range
of a few um. As the temperature is decreased, the stripe
period increases, and a clear up-down asymmetry devel-
ops.

In the present paper: (1) we argue that the regime
where the magnetization disappears in Ref. [4] is due
to this striped phase; (2) we develop the properties of
the striped phase, including the physical mechanism (ex-
change energy within domain walls and elastic interac-
tion between them) that causes orientational order; (3)
we show that these properties provide a natural explana-
tion for the temperature dependence of the period of the
stripe structure, and for the up-down asymmetry; and
(4) we show that the striped phase can be considered to
be a kind of smectic liquid crystal, for which we discuss
the role of thermal fluctuations in causing spatial, but
not orientational, disorder [11].

Our theory begins with the standard Hamiltonian for
a planar ferromagnet:
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where I' is the exchange integral, A is the effective
anisotropy constant (which includes contributions both
from the surface anisotropy and from the short-range
part of the dipole interaction), and Q = 2m(gupS)?/a*
(g denotes the Landé factor, up the Bohr magneton, and
a the lattice constant) is the strength of the dipole in-
teraction; v is a unit vector directed along x — x’. The
first two terms in the Hamiltonian, Eq. (1), correspond
to local interactions. The third term represents the long-
range dipole interaction, which makes a single domain
configuration unstable with respect to the formation of
the stripe domain structure [8]. |

Consider now a system of parallel stripes in an exter-
nal magnetic field H perpendicular to the film. Using
the Hamiltonian of Eq. (1), and including the Zeeman
interaction, we have calculated the free energy per unit
area F of the film, assuming a long-range structure of al-
ternating up and down stripes, of widths L — 6 and L 4+ 6,
respectively. There are two terms. The first is the energy
per unit length E; = +/2I'A due to the creation of domain
walls of thickness [ = 1/I'/2), which involves both the
anisotropy and the exchange energy of Eq. (1). Except
near the RPT, we may assume that | < L. The second
term is the interaction of the domain walls through the
isotropic part of the dipole interaction of Eq. (1):

Q (2m+1)L+6-1 2nL—1 Ly/2 Ly,/2
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where L, is the length of the film in the y direction.
Including both terms, we find that From Eq. (5) it follows that, at the threshold value
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Here n 1/L is the total length of domain walls per
unit area. We use the renormalized magnetic field H =
S%Hpare in Eq. (3). Note that strong thermodynamic
fluctuations occur in 2D for isotropic or almost isotropic
ferromagnets. They renormalize the coupling constants
of the magnetic Hamiltonian in a manner similar to that
of Polyakov’s renormalization procedure [12]. Hence, in
the above equations we must employ the renormalized
couplings I'(T"), M(T"), Q(T), omitting the temperature
dependence for simplicity [5].

For H = 0, the free energy, Eq. (3), reaches its mini-
mum for n = 1/L given by

E,
Q

which depends on temperature via E;, , and I. The ex-
ponent in Eq. (4) is typically very large so that the size of
the domain L = 1/n* appears to exceed any experimen-
tal realization at low temperature, whereas it takes a rea-
sonable value somewhat below the reorientational phase
transition, where the effective magnetic anisotropy A is
sufficiently small. However, Eq. (4) fails in the vicin-
ity of the RPT, because the condition ! < L does not
hold. In that case, instead of well-defined domains, there
is simply a modulated spin structure, with characteris-
tic dimension given by the so-called dipole length value
Lg = 47T'/Q [13, 14].

For H # 0, minimization with respect to § and n leads
to

. 2
n*(T) = ﬁexp<—

. —14Hup
6= 2 12208
sin e
(5)
__1_ * 4H1U*B 2
n—L—n 1_<Qn*) .

3156

H, = Qn*/4up of the magnetic field, the “black” stripe
broadens to infinity, whereas the thickness of the “white”
stripe remains finite and has only a nonsingular temper-
ature dependence L — § — 2/mn*. Such asymmetric be-
havior is in qualitative agreement with experiment [10].
Taking the experimental width of the “white” domain
L =3x10% A, and Qa = 1 K we estimate the threshold
magnetic field to be H, ~ 0.3 Oe.

A stripe domain structure in a thin film is a particular
case of 1D crystal ordering in two dimensions. Landau
and Peierls have pointed out (see, e.g., Ref. [15]) that
thermal fluctuations destroy long-range order in such sys-
tems. We will now show that in the stripe domain struc-
ture there are two main causes for disorder: first, dis-
placements of the domain walls (domain wall meander-
ing); second, the proliferation of dislocations in the do-
main system, each adding one new semi-infinite stripe.
In the presence of quenched impurities, however, both
domain walls and dislocations can be pinned. Thus, ac-
cording to the strength and density of the pinning sites,
a system of stripes can be described either as a liquid or
as a glass, in both cases having a preferential orientation
of the domain walls. In other words, the striped phase is
a kind of smectic liquid crystal. A complete theory must
explain not only the RPT as a function of temperature,
but must also include the effects of thermal fluctuations
in destroying long-range order.

One can take domain wall meandering fluctuations into
account using classical elasticity theory. The domain wall
displacement is described by a one-dimensional (scalar)
field u(z, y), where we assume the coordinate axes x and
y to be perpendicular and parallel to the stripes, respec-
tively. Because we are basically interested in the large
scale properties of the stripe domain structure, we ne-
glect the discrete nature of the displacement u(z,y) and
coordinates x and y. Since a 1D solid cannot support
shear, the strain tensor has only one nonzero component.
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In addition to the strain contribution, the elastic free en-
ergy also includes energies associated with domain wall
bending, and with the in-plane domain wall directional

anisotropy:
K rou 1au22y62u2uau2
Kpou, 1(0u)'p p(Pu)’ v (ou)"
2 Loz 2\ 9y 2\ 9y 2\ 9y
(6)

The compression constant K can be obtained from the
second derivative of the free energy described in Eq. (3).
The bending constant u is less easily obtained [14]. We
find that

F(u(x)) =

Q _ 7<)
7L’ K= 6ams

The spatial anisotropy coefficient v is due to the ori-
entation dependence of the domain wall energy. As dis-
cussed below, to leading order it arises from the exchange
energy expanded to higher powers in the spatial deriva-
tives of the magnetization, which yields

_ 4 | )‘x:ca:a: — 3)\za:yy l
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For the definition of the coefficients Aspcq, see below [Eq.
(13)]. In order of magnitude Agpea ~ A/3LI.

Neglecting v, which is relatively weak, and compar-
ing the bend and shear energies to find the characteristic
dimensions of a dislocation, one finds that the character-
istic energy E,; of a dislocation in the shearless elastic
medium is of order QL [16,17]. This means that disloca-
tions exist at any temperature, and the positional order
does not exist even as an algebraic order [18]. Now, tak-
ing into account the finite value of v, we find that dis-
location mediated melting (proliferation of dislocations)
occurs at the melting temperature:

m = -1—\/ KrvrL?, 9)
v

where Kp and vg are the elastic constant and the
anisotropy constant renormalized by thermal fluctua-

tions:
64mut/?v 28
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(10)
(The renormalization procedure, a modified version of
Ref. [19], will be discussed shortly, along with domain
wall meandering.) The renormalized value of the dipole
constant €2 is proportional to the square of the magneti-
zation S2 [5].
If T,, < Trpt, the striped phase should be disor-
dered at temperatures between T,, and Trpt, due to
dislocation-mediated melting. For a reduced magneti-

zation SZ ~ 0.1 [4], and weak renormalized effective
anisotropy [so Z =~ 1 in Eq. (10)], Eq. (9) implies that

the stripe period L can grow considerably with decreasing
temperature, before solidification of the stripes occurs at
Ty, for which we estimate that L ~(10-100)L,.

In their study of smectic liquid crystals, Grinstein and
Pelcovits showed [19] that in 3D space the anharmonic
terms of the free energy analogous to Eq. (6) with v =0
lead to a logarithmic renormalization of the elastic con-
stants K and p. In 2D, the fluctuations’ correlations
fall off exponentially rather than in a power-law fashion,
while the effects of the anharmonic terms result in power
corrections that can be obtained from an € expansion in
space dimension 3 — €. We have performed the calcula-
tions in the first € approximation and got the exponents
very close to the exact results found recently by Gol-
ubovic and Wang [20]. In particular for the correlation
function of the order parameter ¢(r) = e?*(*) a minor
modification of the Golubovic-Wang procedure leads to
the following result:

2
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and f(z) is a dimensionless function with the asymptotics
f(x) — const at £ — 0 and f(x) — z2/3 at x — co. The
renormalized anisotropy constant v(T') of Eq. (10) has
been found in a similar way. Because of rotational sym-
metry the Hamiltonian preserves the form of Eq. (6)
in any order of perturbation by anharmonicity; only the
effective elastic coefficients change. Note that the corre-
lation function of Eq. (12) displays an anisotropy in the
z,y plane. Under the conditions of the experiment [10]
we estimate the coefficient R in the exponent to be of
the order of unity. This means that correlations along
the x direction decay within a few lateral periods, thus
justifying the use of the continuum approximation. Be-
yond the distance scale 1/p/v the correlation reduction
stops, and positional order persists up to the scale deter-
mined by thermally generated dislocations. This picture
of two distinct scales works only for L >> L;. The correla-
tion (10),(11) can be checked experimentally by polarized
electron diffraction and by detailed study of the electron
microscopy photographs.

Finally, we indicate how the exchange energy within
the domain walls causes the domain walls to have a pref-
erential orientation. One must expand the exchange en-
ergy up to terms of the fourth order in space derivatives,
thus obtaining

(12)
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where a,b,¢,d = z,y; i = 1,2,3; and S? is the local value
of the spin. The Agpcq are coefficients of order of magni-
tude I'a?, and are symmetric under any permutation of
indices. For tetragonal symmetry there are two classes of
nonzero coefficients, Azzzz and Aggyy. Domain walls will

2
25" d?z, (13)
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be oriented along the z or y axis if Azzze < 3Azzyy, and
along the bisector otherwise. Specifically, for a Heisen-
berg model on a square lattice with nearest neighbor in-
teractions we find Azzyy = 0 and Aggzs = —[a?/12 < 0.
The maximal gain of domain wall energy is achieved when
it is parallel to the z or y axis, and calculation shows
that its orientation dependence goes as cos46. Since
6 ~ Ou/0y for small 8, expansion of this energy for small
0 permits the stiffness v in Eq. (8) to be determined.
Note that the preferential orientation is not destroyed
by thermal fluctuations. Indeed, the mean square of the
angular fluctuations <(%Z_)2) can be shown to converge
even for v = 0 [18]. The contribution of next-nearest
neighbors to the coefficients Agpcq is much more substan-
tial than that to the effective exchange constant I'. The
orientation of domain walls is attracted due to this con-
tribution to the direction of a corresponding bond. On
the plane (001) of an fcc crystal it is the direction (100)
which has been observed experimentally.

In conclusion, we have presented a coherent picture
of the major properties of the stripe domain structure
in ferromagnetic thin films possessing a reorientational
phase transition. The rapid growth of stripe size and the
development of stripe asymmetry with decrease in tem-
perature, and the preferential stripe orientation with re-
spect to the lattice, have all been considered. Moreover,
we have shown that over a wide range of temperatures
below the reorientational phase transition, the stripe do-
main structure can be described as a smectic liquid crys-
tal. It has no long-range positional order, due to disloca-
tion mediated melting, although orientational long-range
order persists. The minimal domain size near the RPT
is the dipole length Ly ~ 1 um. A rather weak magnetic
field H < 1 Oe leads to a dramatic, asymmetric, collapse
of the minority stripes. An interesting problem beyond
the scope of our considerations is the glassy state of the
domain liquid, caused by quenched defects. One expects
that in 2D strong thermal fluctuations will obscure the
difference between liquid and glass. Only for measure-
ments over a short time scale can this difference occur.
In any case, on the time scale of the experiment [10] (ap-
proximately one minute), the results are consistent with
a picture based on the assumption of reversible behavior.
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of the manuscript.
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