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Meissner EfFect in Quantum Hall State Josephson Junction
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The Meissner efI'ect is analyzed in the Josephson junction predicted recently for a certain double-
layer quantum Hall system. As a result of the Josephson current the magnetic field parallel to the
layers is squeezed into a sine-Gordon vortex with the flux quantized in the unit of 2vr/e. A distinctive
feature of the vortex is the appearance of an electric potential well perpendicular to the magnetic
field within the layers. We also estimate the maximum strength of the parallel magnetic field which
can be expelled outside the junction.

PACS numbers: 73.40.Hm, 73.20.Dx, 74.25.Ha, 74.50.+r

The fractional quantum Hall (QH) effect is a remark-
able property intrinsic to the planar electron system
[1]. Recent experiments have shown [2] that the double-
layer electron system possesses even- as well as odd-
denominator QH states, which proves that the intrin-
sic nature of planar electrons is not lost even in the
double-layer system. A Chem-Simons (CS) gauge the-
ory of these QH states has been presented [3,4], which
successfully accounts for various aspects of the phenom-
ena. This microscopic formulation predicts [4,5] that a
certain double-layer QH system acts as a Josephson junc-
tion when the filling factor takes an odd denominator;
v = 1/m with m an odd integer. See also Ref. [6]. This
would be the first example where the Josephson effect is
predicted in a system of semiconductors. The Joseph-
son effect occurs due to coherent interlayer tunneling of
the condensed bosonized electrons just like the Cooper
pair tunneling in the superconductor Josephson junction.
Since the bosonized electron carries the charge —e as the
electron does, the unit charge e appears instead of the 2e
of the Cooper pair in various formulas of the Josephson
effect in the double-layer QH system. Such a condensa-
tion is only allowed in a planar system where the statistics
transmutation [7] is possible.

The aim of this paper is to analyze whether a kind of
Meissner effect occurs in the QH state Josephson junc-
tion. We show that the magnetic Beld parallel to the
layers is squeezed into a vortex just as in the supercon-
ductor Josephson junction. This is hardly expected be-
cause the QH system consists of semiconductors and not
of superco'nductors. We also reveal some new features of
the vortex peculiar to the QH state Josephson junction.
They are the existence of an electric potential well with
the size of the vortex and of an electric current parallel to
the magnetic field Bp within the layers; both are absent
in the superconductor Josephson junction.

Let us recapitulate the CS theory of a double-layer
electron system, whose details are found in Refs. [4,8].
In this approach we represent electrons in terms of boson
field @ with the aid of the CS gauge field a&~ together

with the coupling constants K ~ called statistics param-
eters, where a and p are the layer indices: ci, p = 1, 2.
The CS gauge fields have no independent dynamics and
they are determined by the constraint equations

where K~~ = K~~ = integer. They ensure that 2vrK~~
Aux quanta of the statistical gauge field a. are attached
to each bosonized electron Qp in the layer P, transmut-
ing it back into the original electron together with their
relative statistics [3,4,8,9].

The QH state is characterized by the uniform conden-
sation of all Qa, (@ ) g 0, which breaks the CS gauge
symmetry g —+ e+ g . In general, since the resulting
two Goldstone modes are absorbed by the two CS gauge
fields a& and disappear, the state is incompressible. How-
ever, it is compressible when all the statistics parameters
K ~ are the same: K ~ = m with m being an odd inte-
ger. This is because in this case the constraint equations
(1) are reduced to only one equation:

s,i B,a~ = 2vrm(gigi + @zQz),t t

where at, = z(aI, + a~&), and the combination a&~ —a&~

decouples from the system. The system contains only
one gauge field aj„which absorbs only one of the Gold-
stone modes. Hence, one of the Goldstone modes sur-
vives, leading to a gapless mode in the QH state.

This situation is described by our Hamiltonian [4]

(3)

with iDI, = i', +ak —eAI, . Here, M is the effective mass
of electrons, —e the charge of the electron, N the total
number of electrons, pa the chemical potential, and A the
strength of the interlayer tunneling. The external mag-
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netic field B is applied perpendicular to the layers with
Ai, = 2—eBzi,~x~, and u, = eB/M is the cyclotron fre-
quency. Later we shall consider an additional magnetic
field BI parallel to the layers (BI (( B) Terms V~p[@]
represent the intralayer and interlayer Coulomb interac-
tions that drive the planar electron system into the QH
liquid.

In our formalism the lowest Landau level (LLL) pro-
jection is implemented by the condition

(Di —iD2)Q~ = 0 (4)

in the mean-Beld approximation.
Switching off the interlayer tunneling (A = 0), we find

that the condensation of Q occurs at the filling fraction
v = 2vr(pi + p2)/eB = 1/m, which is characterized by
the mean-field solution

aA,, = eAk, (5)

with constant density p and phase 8 . This state mini-
mizes the Coulomb energy, and hence it gives the ground
state. Such a solution is only possible at the filling frac-
tion v = 1/m, which is found by substituting (5) into the
constraint equation (2). Because (2) does not fix the den-
sity of the electrons in each layer separately, any change
of each density p does not break the condensation in
the QH state as far as pi + p2 is fixed. This suggests the
presence of a gapless mode associated with the change of
the density (pi —pq), which can actually be proven within
the Gaussian approximation around the mean-field solu-
tion [4]. It is the Goldstone mode we mentioned before.
We note that its existence has also been studied in other
approaches [10]. This gapless mode is the origin of the
3osephson effect in the presence of tunneling.

Equation (5) implies that the CS gauge field cancels
precisely the external magnetic field perpendicular to the
layers. Thus, bosonized electrons do not feel efFectively
any magnetic field and condense with energy 2~,N, as re-
vealed explicitly in the Hamiltonian (3). It can be shown
that the state is described by the Halperin wave function

[12] for the coherent tunneling are easily derived [4]:

iBogi = pili —A@2, iso'4 = @24~ —&@i.

Substituting (5) into these equations, we find that

0,8 = —p +Acos6 —A, (8)

where 6 —= Oi —82 is the phase difference; here, we have
shifted p, —+ p + A so that 0&8 = 0 when there
is no phase difference (h = 0) and no external voltage

(p = 0). It follows [12] from (7) and (8) that the phase
difference satisfies

Bib' = eV,

and that the 3osephson current is given by

J, —= B,pi = J, sinb, (10)

where J, = 2Apo with po being the average electron den-
sity on one layer. Here, eV —= p, 2 —p, z is the electric
potential difference applied across the layers; the index
z in the 3osephson current indicates that it flows in the
direction of the z axis taken perpendicular to the layers.

We now analyze the screening of the external magnetic
field parallel to the layers due to the 3osephson current.
We first show that it is squeezed into a vortex with the
fiux quantized in the unit of 27r/e. Although the equa-
tions governing the parallel magnetic field Bp inside the
QH state junction turn out to be essentially the same as
those in the superconductor junction [13], their deriva-
tion is quite different from the latter case.

Our basic equation is the LLL condition (4), or

i Di,g = (i' + ay —eAA, —eAi, )g
~po(Bi, 8~ + eAi, )e' - = 0,

where Q = ~poe's and A, is the electromagnetic po-
tential describing the parallel magnetic field BI . Let us
take this magnetic field in the direction of the x axis and
assume it to be uniform in x; then, 8 as well as BI
do not depend on z. In the gauge A+ = 0, the above
equations yield

z —z ~ z —z ~ z —z

x exp ——eB z, + zI,

0„6= —e[A„(z = zi) —A„(z = zg)]

= —edO, A„= eBI d, (12)

by taking account of the Gaussian fluctuation around the
mean-field solution [4]. Note that in this QH state the
electrons are strongly correlated between the layers as
well as within each layer as indicated by the same power
m; hence, to realize such a state the interlayer distance
d should be taken to be comparable with the magnetic
radius l~ = 1/geB.

The small interlayer tunneling term (A g 0) causes
coherent tunneling between the two layers. Using the
LLL condition (4), the well-known equations of motion

where we have assigned the coordinates z to each layer,
and d —= zi —zq is the distance between the two layers.
The above manipulation is justified when BI is smooth
in z between the two layers. The y dependence of the
phase difference 6 is related to the parallel magnetic field
BI through this equation.

In order to take into account the screening effect due
to the induced 3osephson current we consider a Maxwell
equation, O„BI ——eeJz E'0)E with e being the dielectric
constant of the matter between the layers. Using (10) and
E, = —V/d we obtain
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B„Bp= eJ, sinb+ed 'B)V.

A combination of (9), (12), and (13) gives a sine-Gordon
equation,

(sB, —B„)b+e dJ, sinb = 0, (14)

inside the junction.
Let us first consider a junction with an infinite size.

There exist soliton solutions that are characterized by
the boundary condition b'(y = +oo) —b(y = —oo) = 2am,
with n being an integer. They represent vortices confined
in the y direction within the size E~ 1/v'e2d J„which
is the penetration depth. This topological nature of vor-
tices makes the magnetic fIux 4 quantized in the unit of
2' e:

1
B~dy =— 2~

B„bdy = n,
e

where use was made of (12).
In the above derivation of the fIux quantization we have

tacitly assumed that the magnetic flux is confined in the
z direction between the two layers. Indeed, the factor
d in the second term of formula (15) results from inte-
gration over the distance d between the two layers. In
order to prove this confinement, we note that because
of the current conservation the Josephson current (10)
inevitably induces a current J„=J„ in the y direction
on the first layer and a current J„=—J„on the second
layer. Here, evaluating the accumulated currents due to
the Josephson current we find

J, (y')dy' =
s B„b

for the static soliton solution satisfying B„b = 0 at
y = —oo. The z dependence of the magnetic flux Bp
is controlled by these currents according to a Maxwell
equation, B,Bp = —eJ„[b(z —zi) —b'(z —zz)], which
holds inside as well as outside the junction. Integrating
this Maxwell equation we obtain

Bp(y, z) = e[8(z ——zi) —8(z —zz)] J„(y) + Bp. (17)

Here, by requiring the other Maxwell equation (13), the
integration constant Bp is found to be really a constant.
It is the magnetic field outside the QH state junction.
Inside the junction it reads

Bp = (1/ed)By6'(y = L)— (i9)

to be imposed on the phase difference b for a given exter-
nal field Bp. According to (19) and (14), when Bp is suffi-
ciently small it can penetrate into the junction only near
the end points with the penetration depth Ev. Namely,
Bp = B&b'/ed vanishes inside the junction. When it is in-
creased it can penetrate inside the junction as the quan-
tized vortices.

Iet us make some numerical estimations. The typ-
ical size l~ ( 1/v'e dJ, ) and the magnetic field Bp
( vr/edlv. ) of the vortex are of the order of 0.1 mm
and 10 T, respectively, for A = 1 K, d = 100 A. , and

pp = 10 /cm . The maximum strength of the exter-
nal magnetic field Bp that can be screened is also of the
order of vr/ed'~ 10 T from (19). Hence, when we
adjust the alignment of the magnetic field B ( 10 T)
applied perpendicular to the layers within the accuracy
of 68 (10 2 T)/(10 T) 10 s, the parallel component
Bp of the magnetic field B due to the misalignment may
be regarded as small enough to be screened.

We proceed to consider a QH system with DC-voltage
feed or DC-current feed, where the applied magnetic
field is so strong that the total flux passing between the
two layers, BpLd, becomes much larger than the fIux
carried by vortices, (2vr/e) x (L/E~) Then, th. e in-
duced Josephson current cannot screen completely the
external magnetic field. In this case we may solve (9)
and (12) by neglecting the screening effect due to the
Josephson current. Then, the phase difference is given
by 6 = eVt + eB~yd in the DC-voltage circuit. The
Josephson current oscillates in space and time:

J = J, sin(eVf + eBpyd). (2o)

ness is that the parallel magnetic field confined between
the two layers gradually decreases in the thickness of the
layer and vanishes outside the junction.

We next consider the screening of an external magnetic
field Bp in the junction with a finite size I. In this case,
we obtain

1-
Bp = —Byb(y) —Byb(y = L) —+ Bped-"

instead of (18), where y = Ld—enotes the end point of
the junction. Now, comparing this with (12) we find the
boundary condition

1
B~ ——eJy + Bp ———Byb + Bp

ed
(18)

The electromagnetic radiation induced by this oscillation
must be observed in the double-layer system. On the
other hand, in the DC-current circuit, we get

for the static sine-Gordon soliton. Comparing this with
(12) it is necessary that Bp = 0. Namely, in the vortex
solution the parallel magnetic field is confined between
the two layers.

Although our analysis has been carried out in the ap-
proximation of layers without thickness, the finite thick-
ness of the layers should obviously not change the above
result about the squeezing. The only effect of finite thick-

J = J.»n(bp+eBpyd).

Evaluating the total Josephson current we obtain

sin(ere /C p)
Jtota] = L Jc sin bp

with Cp = 2~/e being the unit flux.

(2i)

(22)
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1 AE„=——O„p~ = ——(sin6)8„6',e" e (23)

which is identical in both of the layers. It is easy to check
that the electric field E„and the current J„do not lead
to any dissipative process, i.e., f J„E„dy= 0.

Second, the current J~ parallel to the magnetic field
BJ appears in association with this electric field E„ in
the QH state: J~ = cr»E„. This current is quite small
compared with J„since J,/J„= O(Ad) = O(10 s) where
d = O(100 A.) and A = O(1 K). These E„and J exist
only around the vortex. Their appearance is very pecu-
liar to the QH system; an electric field can never appear
in a superconductor.

We conclude this Letter with the following remarks.
First, when the current J fIows within the layer, there
will be a voltage drop AV JL2p» due to a small but
nonvanishing p~~ in an actual system. It is necessary to
require that this drop be sufliciently small (AV « V) so
that the 3osephson effect will not be destroyed, Using
numerical values given before, this condition turns out
tobep~((10 50for V 10 4VandL lmm.
Second, as we have already argued, in order to observe

We have so far analyzed aspects of the Meissner effect
in the QH state Josephson junction which are almost
identical to the superconductor case [13]; that is, vor-
tices with flux quantization (15) and penetration depth
l~, Josephson current oscillation (20), and magnetic field
dependence of the maximum DC Josephson current (22).
The only difference is that the unit charge e appears in
place of 2e in various formulas familiar in the supercon-
ductor case.

We now point out some distinctive features of vortices
peculiar to the QH state junction. We only consider the
case with the phase difference 6 associated with the static
sine-Gordon vortex (14). First of all, an electric field E„
in the y direction appears spontaneously due to the static
but spatially varying phase difFerence b. To see it we
analyze (8) on each layer, which leads to p~ = A(l —cos b)
for 0&8 = 0. This equation implies that the nontrivial
chemical potential (equivalently the electric potential) is
induced in association with the vortex soliton. Namely,
the electric potential well (—p~/e) appears in both of
the layers; note that the electric charge of electron is —e.
Thus, the electric Geld E„ is given as

the Meissner effect the alignment of the perpendicular
magnetic field needs to be adjusted within the accuracy
of 68 10 s. Finally, the Josephson effect will be ob-
served not only at v = I/m but also in its plateau, where
pseudoparticles are excited and trapped. Pseudoparticles
do not carry the current in the plateau and hence have no
effect on the Josephson current below the critical current
J, [14]. We hope that our predictions about the Joseph-
son effect and the associated Meissner effect are verified
in future experiments.
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