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Quantum Mechanics of Electrons in Crystals with Graded Composition
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We construct the effective Hamiltonian describing the motion of electrons in compositionally graded
crystals which is I alid throughout a gif. en energy band and part way into the gaps. Near the edges of a
simple or degenerate band this effective Hamiltonian reduces to an effective mass Hamiltonian with po-
sition dependent effective mass. Next, we examine more general states —not restricted to the vicinity of
a band edge —in crystals with composition and applied potential variation in one direction. We obtain a
WKB-type solution for the envelope functions, as well as the appropriate turning point connection rules.

PACS numbers: 73.20.Dx, 71.10.+x, 71.50.+t, 78.66.—w

I n recent years, the ability to fabricate semiconductor
nanostructures with highly controlled variable chemical
composition has led to a renewed interest in the physics of
electrons in nearly periodic fields and at interfaces. In
this Letter we present some results of an ongoing investi-
gation into this subject: (i) First, an effective Hamiltoni-
an )V is constructed that describes the behavior of elec-
trons in a semiconductor whose composition has a slow
spatial variation —slow enough so the concept of a local
"band" is well defined. This will be the case when the
length scale over which the composition varies is much
larger than a lattice constant. The accuracy of this
effective Hamiltonian depends only on the composition
gradient —it is I. alid throughout a given energy band and
part way into the gaps. (ii) Second, we use this effective
Hamiltonian to (a) derive effective mass Hamiltonians
valid near the edges of simple and degenerate bands (set-
tling a controversy in the literature [1—11]), and (b)
derive a %KB-type envelope function and associated
turning point connection rules for states, not necessarily
near a band edge, in crystals with composition and ap-
plied potential variation in one direction.

Consider first a random a1loy A, B]—,with a spatially
uniform composition characterized by c. Any particular
sample, J, will have a nonperiodic single-particle poten-
tial VJ(r, c) due to the particular positions of the type A

and 8 atoms. We now define a periodic potential, V(r, c)
—:&VJ(r, c)&, where & & represents the ensemble average
over all atomic configurations having a fraction c of type
8 atoms. This approximation is similar to the virtual
crystal approximation [12], a linear interpolation between
V(r, 0) and V(r, 1 ). We assume the knowledge of the
band structures E„(k,c) associated with the periodic po-
tentials V(r, c). Next consider a sample with a composi-
tion c(r) varying slowly on the scale of a lattice constant.
We shall call V(r, c(r)) the nearly periodic potential and

E„(k,c(r) ) the local band structure of the alloy.
For simplicity, we consider a monatomic Bravais lattice

I =g, =~l,b', where the b' are the three smallest primi-
tive lattice vectors. We assume that the primitive lattice
vectors b' are independent of e. Most of the results we
will present are valid for arbitrary crystal structures —the
places where the Bravais lattice assumption is explicitly
used will be noted.

I + I'
BI( =—— d kE k, cv~BZ 2

ik (l —I')

This defines our effective Hamiltonian & for nondegen-
erate bands. Although band indices have been sup-
pressed, (2) is to be understood to be exactly band diago-
nal. & is manifestly Hermitian, and since E(k,c)
=E(—k, c) f'or a given c, it is also real. The form we

have chosen for )V is not unique —alternate forms, for ex-

ample,

„c(1)+c(l'),„.(t ()
2

I Effectiv. e Hamiltonian Let.—H be the Hamiltonian
for an electron in a crystal with a slowly varying composi-
tion c(r), and let U(r) be a slowly varying applied poten-
tial. We expand the Schrodinger equation in a general-
ized Wannier function (GWF) basis [13,14]:

g (&at., l H lat. ;&+&at., liU fat. , &)@t"" =E@t"'
l'n'v'

The GWFs ~at„,& in a nearly periodic potential are la-

beled by a band index n, a branch index v if the band is

composite„and a lattice vector I about which the func-
tion is centered. They have the same completeness,
orthonormality &at„,~at„,&=6tt6„„6„,band diagonality
&at«)H)at„, & =6«& at~0)at„, &, and localization proper-
ties as the standard Wannier function (WF) in a peri-
odic potential. The eigenvectors &bt"' of (1) determine
the eigenfunctions in the coordinate representation: y(r)
=gt„,&bt""at"'(r —I ), where at"'(r —I ) = &r

~ at„,&.

The exact matrix elements in (1), of course, are un-

known. We shall show that we can approximate the ma-
trix elements of H by using the local band structure —the
precise forms of the Hamiltonian H and GWFs at""(r —I)
are not needed. Consider first the matrix elements of the
Hamiltonian H, for an electron in a crystal with a uni-

form composition c. For a nondegenerate band n, in the
standard WF basis, &at,c~H, ~at, c& =v ' fd k E(k,c)
xe'"'tt t1. Here v is the Brillouin zone (Bz) volume

and the integral is over the first BZ. The matrix elements
in the graded crystal depend on the composition of the
crystal near the sites I and I'. Therefore, we can approxi-
mate the exact &at ~H ~at & by
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In general, & =H(1+6(») ) for a degenerate band.
Since the external potential U(r) in (I) is assumed to

be slowly varying, (ai„,!U!ai „,) = U(l )6tt 6«6„. In
general, the errors in this approximation are 6(y)

dilTer from (2) by terms of order» . Here»=b!Vc! is a
dimensionless small parameter characterizing the small
gradient in c(r), and b is the average magnitude of the
three b'. In general, the errors in (2) are of order», the
change in c over a unit cell, in contrast to errors of the or-
der of the change in c over the entire sample if a single
mean composition were used. In a study to be published
[14], we have shown that for a Bravais lattice the exact
(ai H ai ) are real, from which it follows that the
(ai H ai) have no parts of order»; hence & =H(1
+6(")).

For a degenerate band n with branches v, the effective
Hamiltonian is defined similarly. First note that in a uni-
form crystal, the energy bands E'(k, c) may be obtained
from the matrix D" (k, c)—:gi(at„; c!H, !at+i-, ,c)e
whose eigenvalues are E'(k, c). Conversely, if E'(k, c) is
known from experiment or from a band structure calcula-
tion, the matrix D can be determined by the requirement
that its eigenvalues agree with the known E'(k, c). In

practice a small number of independent matrix elements
(ai, ;c!H, !at+i „,c) (on-site, nearest neighbor, etc. ) in D
will be sufhcient to fit the band structure. The matrix D
is not unique, since the WFs !at,;c) are not unique; how-

ever, any matrix D yielding the correct energy bands is

acceptable. In terms of the matrix D, the effective Ham-
iltonian for a degenerate band may be written as

+6(»y), where y= b—! VU!lW is a dimensionless small pa-
rameter characterizing the small gradient in U(r), and
W(r) is the local bandwidth. To see this, note that the
relation is exact when y=O, but has 6(y) errors even in

a uniform crystal. However, in a Bravais lattice (and in

other crystal structures with inversion symmetry about
the midpoints between the lattice sites), there are no

6(y) errors, but rather 6(y ) errors instead. Therefore,
Eq. (I) for the nth band becomes

/fttr'et''+ U(l )iIit =E&bt (4)
I'v'

with errors 6(y )+6(»y), plus 6(» ) errors for a sim-

ple band in a Bravais lattice or 6(») errors otherwise.
Under the stated conditions of slowly varying U(r) and
c(r), the solutions of the discrete linear equations (4)
provide a complete description of the behavior of elec
trons associated ~Ith a git en band, In what follows, we

apply (4) to two special cases.
Ila Effectii e. mass Hami'Itonians. —We now show

that near a band edge, i'Y reduces to an effective mass
Hamiltonian [15,16] with position dependent effective
mass. Consider first the case where F is near the mini-
mum of a nondegenerate band, that minimum occurring
at the center of the BZ of the local band structure, in-

dependent of composition. In this regime, the WF ampli-
tudes &t are slowly varying in space. Let F(r) be a
smooth interpolating function passing exactly through the
values &t at each site: F(r)!i =At. The definition of F
for all r will be given below; for now we assume that F
has continuous first and second derivatives. Equation (4)
can then be extended to the continuum by using the
definition (2) of P for nondegenerate bands, Taylor ex-
panding F to second order, and noting that E(k,c(l))
=gtA't i+icos(k I)+6(» ). This leads to

I
V

O'E(k, c(r))
2

'
tlk t)k,

tl'E(k, c(r))
Bk;Bk~

1

m*(r) , k=0

Note that we have not performed an ad hoc syrnmetriza-
tion in (5). Equation (5) holds at each lattice site l. It
involves the continuous envelope function F(r) only
through its value and its first and second derivatives at
r =I. F(r) is now defined for all r by requiring it to satis-
fy (H, tr

—E)F=0 exactly, where

= -6'
&e[T: V

2

1
V +N(r)+U(r), (6)

m*(r)
along with the boundary conditions of the original prob-
lem. Here 6'(r) is the energy of the local band edge. The
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V~ +E (O, c(r) ) + U(r) —E
, k=o

with errors 6(y )+6(»y)+6(» )+6(»tI )+6(tI ),
assuming a Bravais lattice. Here tI =b!VF!lFis a dimen-
sionless small parameter characterizing the slow variation
of F(r), and the first term in (5) involves the local effec
tii e mass tensor

F(r) =0,
I

(5)

and so forth. These kinetic terms are all equi' alent ~hen
their accuracy is considered, a point which seems to have
been overlooked in the literature [I —11].

An effective mass Hamiltonian for degenerate bands
may be derived similarly. For simplicity, we again as-
sume that the extremum occurs at the BZ center.
Defining a continuous envelope function F"(r) for the vth

effective mass Hamiltonian (6) also applies to states near
the top of a nondegenerate band —in this case A (r) cor-
responds to the energy of the local band maximum. Solv-

ing the eigenvalue problem (H, tr
—E)F =0 yields eigen-

vectors F(l) and eigenvalues E equal to the exact values

apart from the errors quoted in (5). Alternative forms of
the kinetic energy term in H, tr, differing by 6(» ) terms,
are (in one dimension)

1 2 1 1 2 1 1 2 1
TetT' p ~ + ~ p ~ TefT p4 m*
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branch of band n results in a set of coupled differential
equations P, (H;~ —E8"')F' =0 for the F"(r). We find

B'D" (k, c(r) )
2

'
Bk Ski

Vi
, /&=0

+D'" (o,c(r) )+U(r) ~'", (7)

with errors 6(y )+6(ey)+6(e)+6(eel )+6(q ).
The quantity [B D" (k, c)/Bk;Bk/]t, =n has a well known
form given in Ref. [15]. Our results (6) and (7) agree
with perturbative calculations in the c« 1 limit [3-5];
however, the present derivations are free of this assump-
tion.

lib 8'K. B approximation for crystals. —We now ob-
tain a WKB-type solution to (4) for a nondegenerate
band, whose validity is not limited to the vicinity of a
band edge. We assume that the composition and external
potential vary in the z direction only. Then, in obvious
notation, the %F amplitudes may be written as

ik~ l~=e ' 'Ft, where k& is a constant, and (4) reduces to

ziti I+IF(+ I +U(i) F/ =EF(,
l

where hl i+1(k~) —=gi- &11+ye '. Now define a local
wave number k(z) by

E(k(z),.(.))+U(z) =E,
suppressing the dependence on k&. There may be more
than one solution k(z) of (9); the following analysis ap-
plies to each solution. The z component of the local ve-
locity is defined as i (z) —= [BE(k,e(z))/Bk]i, =qt, 1. A
WKB-type solution ot' (8) is

l
FI = exp i ), k (z) dzJ 0)

with 6(e2)+6((b2k )z)+6(b k'e) errors, as can be
verified by direct substitution. When written in terms of
the continuous variable z, the envelope function is

l fz
F(z) = exp, i Ji k (z')dz' (10)

JBE/Bk
where k and E are related through the band structure
and BE/Bk is understood to be a function of position.

d d+g+X g + F(g) =0,

where X=Py ' . We first assume that X, «1, which can
be sho~n to be equivalent to the assumption that the
fractional change of (m*) ' is small over the turning
point region L = y

' . Also, as in conventional %KB
theory, the condition (Vo'/Vo)L «1 must be satisfied.

We now solve (12) for the usual case, where k is small.
Asymptotic expansions of F(g) as ( + ~ will be used
to inter the connection rules. The solution ot' (l2) may
be written as a contour integral F(g) =cfre 'g(s)ds in
the complex s plane, where c is a constant, g(s)
=e ' ' [1 —k( 2 s —

5 s )]+6(k ), and the end
points s; and sf of 1 satisfying 7/r/6 ( arg(s;) ( 3/r/2 and
~/2 ~ arg(sf) ~ 5~/6 as is i

~. Saddle-point approxi-
mations then yield the following asymptotic solutions (to
order X):

(12)

This is the appropriate generalization af the convention
ai 8 KB waie function to electrons in uniform or stowiy
graded crystals.

In analogy with conventional %KB theory, we now cal-
culate the connection rules by solving Eq. (4) near a
turning point where the energy E is equal to the total en-
ergy of the band edge. Since we are interested in the re-
gime near the band edge, we may use the effective mass
Hamiltonian with position dependent effective mass (6),
in one dimension. Let V(z)=6(z)+U(z) be the total
energy at a band minimum, the turning point zo defined
by V(zn) =E. We then shift the z origin to the turning
point and expand the inverse effective mass and V linearly
about the turning point:

1 l
(1 —Pz), V(z) = Vo+ Voz . (11)

m*(z) mo

For definiteness, we consider the case where Vo & 0; the
case where Vo &0 is analogous. Combining (11) with
(6) yields

d d d+ yz+P z + F(z) =0,
dz dz dz

where y=—(2mo /6 ) Vo. Next we introduce a stretched
coordinate g—:y z; then-]/3 .

F(g) 1

g
—i/4 —(2/3)(''

1
1

gg /2

2 5
(13a)

F(g) —ill '"sin —igi"'+—
3 4

1
——Xiii s/'cot —i(i'/2+—

5 3 4
as (13b)

—I/2

exp —J"ikidz
E 1 BE

Bk
cos ik idz ——

J 4 2 Bk
(14)

for the envelope functions. The derivation of (14) is valid for small A, . A derivation of the connection rules up to A, = 1

is also possible, by performing an analytic continuation and passing around the turning point in the complex z plane,
remaining everywhere in the region where (10) is valid. We have also carried out this calculation and have obtained
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where we have used c=(2'' i) '. Near the turning point, k =y' [—g/(1 —Ag)]' . Then (13) implies the connec-
tion rules
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