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Transport Properties in the Tomonaga-Luttinger Liquid
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We investigate the conductivity using Green s functions in the Tomonaga-Luttinger liquid. It is
shown that the resistivity has a linear temperature dependence if we take account of the physical process
that the accelerated electron decays into spinon and holon. The effect of impurity scattering becomes
visible only below a crossover temperature which strongly depends on the impurity strength, every cutoff,
and spin and charge velocities. The optical conductivity is also studied and it is shown that the relaxa-
tion rate has a linear frequency dependence.
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It is important to study the non-Fermi-liquid behaviors
in high-T, superconductors. The most prominent fea-
tures are the temperature dependences of normal-state
transport properties: the linear- T resistivity, the T
dependence of the Hall angle, and the c-axis resistivity,
which are impossible to explain in the conventional
Fermi-liquid theory. In the strong coupling regime to
which the high- T, materials belong, we expect spin-
charge separation and the physics is determined by the
strong-coupling fixed point. In this paper we study the
transport properties in the one-dimensional Tomonaga-
Luttinger (TL) liquid as one of the exact realizations of
this strong-coupling fixed point [1]. The Green's function
does not have quasiparticle poles but instead has a branch
cut and different spin and charge velocities [2], so that
non-Fermi-liquid transport properties are expected. So
far the TL liquid is the only microscopic model with one
band which is not a Fermi liquid. To investigate its
transport properties is significant for strongly correlated
systems as well as for quasi-one-dimensional conductors.
We will point out the importance of the physical process
that the electron after acceleration by the external field
decays into spinon and holon.

Anderson and Zou [3] used resonating-valence-bond
mean-field theory to calculate conductivity by a holon-
spinon scattering mechanism. If the statistics of holons is
taken into account seriously, the resistivity is proportional
to T in a dilute holon gas limit. It was pointed out,
however, that for finite density of holons, linear-T resis-
tivity is probable, but greater understanding of the
spinon-holon system is required [4]. A recent Hall angle

experiment strongly supports the spin-charge separation
because of the existence of two kinds of relaxation rates
observed in experiments [5]. Nagaosa and Lee [6] tried
to explain the linear-T resistivity using a scattering mech-
anism of holons by the gauge field. However, their
method is based on the slave-boson mean-field theory; the
constraint conditions are only approximately taken into
account. It is difficult to justify the mean-field treatment
especially for the strong-coupling regime. On the other
hand, in the one-dimensional (1D) Hubbard model we
know that infinitesimal electron-electron interaction al-
ready leads the system to a strong-coupling fixed point
and the system is always described as a TL liquid [2,7,8].
In other words, the Gutzwiller projection can be taken
into account exactly. (Actually the 1D t Jmodel w-ith a
strict Gutzwiller projection is shown to behave as a TL
liquid [91.) It is thus a big advantage to investigate
transport properties in the TL liquid as an example of
strongly correlated systems. Although the microscopic
justification of the TL liquid in higher dimension is not
widely understood [10,11], it is possible to demonstrate
that the strong-coupling fixed point is likely to be the "to-
mographic" TL liquid [12],at least in two dimensions.

In this paper we find the linear-T resistivity (I/z
—kttT) and linear frequency dependence of the optical
conductivity (I/z —co). We also show that the effect of
impurities is diA'erent from the Fermi liquid and this may
be the reason why the residual resistivity appears to be
zero in most optimized samples.

First we consider the Kubo formula for conductivity at
finite temperatures:

where f(to) is a Fermi distribution function I/(e~"+ I )
and g(k, to', co' —co) is a vertex correction. As a simple
approximation we neglect vertex corrections. In the
co 0 limit,

1

is the conductivity in real systems. If we calculate the
Kubo formula using the current-current correlation func-
tion, we get [13] tr(co) = —ne K~/mico, where K~ is a
correlation exponent. This is because there is no dissipa-
tion mechanism in the TL liquid under the periodic
boundary conditions. However, this is not a true descrip-
tion because the real physical process in the strongly
correlated system is that an incident electron decays into

o(co =0)=,g„dto'k„'[ f'(co')] IG "(k,co') I'. —
xm k

(2)
This approximation involves a subtle problem of what

2 r
o (co) = g „dco'k [f(co' —co) f(co') ]g(k, co', co—' —co)G (k, co') G"(k, co' —co),

+am k
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spinon and holon. Apparently we need to take account of
a system with open boundary conditions instead of a
closed system as implicitly assumed in the Kubo formula.
In a sense, the transport problem in the strong-coupling
regime is similar to the phonon-drag problem, where if
the phonon-drag effect is completely taken into account,
there is no dissipation. In the open boundary case we can
think that the spinon and holon systems are in thermal
equilibrium independent of the accelerated electron. As a
result, even if there is a phonon-drag (in this case
spinon-holon-drag) effect, the compensation is not com-
plete and there is a dissipation for the electrons.

It is a long-standing question what the correct or
reasonable conductivity formula is in such cases. Here
we use a very rough approximation of neglecting vertex
corrections, assuming that the open boundary effects or
holon-drag type effects are partly taken into account. We
have no formal way of doing this within the TL liquid,
but using a phenomenological Boltzmann equation the
thermal equilibrium of a spinon-holon system can be
achieved by relaxation of spinons and holons due to
impurity scattering. The resistivity becomes p= 1/z(l
+ zt, ,/z), where 1/z/, , is the relaxation rate for holons
or spinons. If there is no relaxation, then rI, , ~ and

p 0 which means that the drag effect is completely tak-
en into account. On the other hand when i~, &&r, the
contribution of the drag effect is zt, ,/z —T z/, , which
is smaller than I/z —T. This corresponds to the case
where the spinon and holon systems are almost in equilib-
rium. In order to see this mechanism in diagrammatic

representation we check the effect of holon-impurity
scattering in a phenomenological Hamiltonian. Some of
the impurity scattering processes of holons do not con-
tribute to the electron self-energy diagrams, but they are
more effective in the diagrams representing the vertex
corrections. These vertex corrections are analogous to the
diagrams used by Holstein to represent phonon drag, and
as in that case the vertex corrections may be neglected
when the impurity scattering rate for the holon is fast
compared with the holon's relaxation rate due to spinon-
holon scattering, T . (The latter estimate is arrived at by
use of detailed balance and the electron decay rate ~ T.)
This indicates that the vertex corrections are to be
suppressed to approximate the situation with a small rp „
or equivalently, almost equilibrium of holon and spin sys-
tems.

Moreover the conductivity formula (2) resembles the
Landauer formula [14] which is appropriate for open
boundary problems. The retarded Green's function rep-
resents the probability of finding the accelerated electron
at a distance x and plays a role of transmittance coef-
ficient. The relation between the Landauer formula and
microscopic formula has not been clarified yet, but we ex-
pect that the formula (2) will serve as a kind of Lan-
dauer formula for metallic cases [151.

Let us proceed to calculate the conductivity using TL
Green's functions [2]. In this paper to avoid unphysical
complication of mathematical expressions, we use an ap-
proximate form of 6 which reproduces the correct be-
haviors of the original 6 in physically important regimes
[16]:

~ lkFX

GR(x, t) =+ e(t ) Im
8(x/v, —t) '/'8(x/v, —t) '/'8(2x/v, )'

(x+ v, t ~i/A) '/'(x T- v, t ~i/A) '/'(2x Ti/A)
(3)

where ~ corresponds to the two branches (i =1,2) in the
vicinity of + kF, respectively, A is a large-k cutoff of in-
teractions, and x =max(x, v, t). The temperature depen-
dence shows up in 8(X) = (tzX/p)/sinh(AX/p) with
P= I/O/)T. The exponent a is a= 4 (K~+ I/K~ —2) and
0~ e~ 8 for the 1D Hubbard model. It is straight-
forward to compare the behavior of the Fourier trans-
form in various limiting cases. The singularities in the
vicinities of to —v, k and v, k are (to —v, k)
and ((o —v, k ) ' +', while the original G has (co

—v, k) ' ' / and (to —v, k) '/ +'. lt can be checked
that this difference does not change our final results. The
differences are only harmless numerical prefactors. The
singularity at to+ v, k is omitted in (3), but even in the
original G it is (to —v, k)'/ which does not diverge and
makes no contribution to relevant physical quantities.

There are two typical parameter regions: x & Pv —and
x & Pv with I/v ~ =

2 (I/v, + I/v, ). In the region x
& pv — including T=O, we can approximate 8(X)—1,

and the Fourier transform of 6 becomes

GRl (x, co) =— ikFX+i (e)/V ~)X
0(x)Jp (2x —i/A)

[)
(4)

In the other region x & Pv — for finite temperatures, the
exponential decay of 8(X) becomes important. This is
special for the TL liquid and its importance is discussed
below. The integral in 6 is estimated from its behavior
in the regions

~
t —x/v, ~

& p and
~
t —x/v,

~
& p to give

GR ( ) ~ (2ax/tl)(l/2v +a/ )ix, co ~e
Substituting these Green's functions into the conduc-

tivity formula, we obtain

2k 2 &, pl —2a

c (o) =O) =—,„do)'f'(o)')
2

1(Pro'),
xm' " vv(v —A) '

where I(Pro') is a function of order 1. The integral over
co' may give a weak temperature dependence but the
dominant temperature dependence is p' '. Since a is
small we have roughly linear-T resistivity. Assuming v,
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) v„A—I/a, mv, —kF =ntr/2, and v, A —J, we have
r ' 2a

peratures, T & (k, /A) J, the resistivity becomes

nePv — 1

m 2v, PJ

r r ' 2g
m J

p ~ 0 7
tie

k,
zg 2A

i i u i 'sin(tra/2)1 (I —a)
(v, v, ) ' a 2A

for k,Pv —)) 1, and

iiui'k, Pv

(v, v, ) ' (1 —a) 2Pl' —A

' a

(5)

for k,Pv —& 1. The important difference is that self-
energy depends on the cutoff' and has a diAerent behavior
compared to Fermi liquid. In the case where we expect
k, ((A the impurity eA'ect can be very small. Moreover,
the eA'ect of impurities has a distinctive temperature
dependence. In relatively higher temperature region,
T) k, v ——(k, /A)J, a simple partial summation of im-
purity diagrams leads to

m J
p

ne

Jk,
rgTA 2J

In this case the residual resistivity extrapolated from the
high temperature behavior looks like zero. At low tem-

The relaxation time I/z =ktlT shows up because the
Green's function has an intrinsic decay proportional to
e

' . This comes from the fact that the accelerated
electron cannot propagate coherently in the TL liquid,
but decays into spinon and holon propagating with diAer-
ent velocities. This is characteristic for the TL liquid
where v, &v, and v —is finite. Note that in a Fermi liquid
with a =0 and v =~, the retarded Green's function
is temperature independent and Gl (x, r0) = —[i8(x)/v]

ikF x+i(co/v)x
& e ', showing that an electron propagates
coherently. It is also worthwhile noticing that strictly at
T=0 the TL Green's function, Eq. (4), does not have an
exponentially decaying factor. In other words thermal
fluctuations destroy the coherence of electrons which
propagate partly with the charge velocity and partly with
the spin velocity. Anderson and Zou [3] described this
effect as holon-spinon scattering. As mentioned before, if
we use the current-current correlation function and
periodic boundary conditions, this phenomenon is missed
and electrons recover their total momentum via holon-
drag processes. We believe that the real physical process
is taken into account in our calculation.

Next we consider the eA'ect of impurities. In the con-
ventional diagrammatic procedure, the relevant self-
energy is iud f"'G (q, co)dq, where the impurity poten-
tial is approximated as a constant iud near the Fermi sur-
face. In the Fermi liquid this self-energy is —itriui /vF,
independent of the energy cutoff k, causing a relaxation
I/rtt. In the present case, however, the TL Green's func-
tion gives

The eAect of impurities becomes visible below a crossover
temperature which is min [ I /r tl, (Jk,/r tlA) ' ] for the
small a limit. At very low temperatures and large (k, /
A)', impurity scattering may lead to 1D Anderson locali-
zation insofar as we use the conventional Kubo formula.
Renormalization group studies [13,17-19] use the self-
energy (5) and show that the impurity effect is stronger
than the noninteracting case. We would argue that the
Anderson localization (if any) may take place below
the crossover temperature which depends on impurity
strength, cutoA', k„A, and velocity diAerence v . Above
that temperature the dominant term is linear in T; below
that crossover temperature the resistivity may begin to in-
crease and eventually go into the Anderson localization
regime which was discussed using the renormalization
group.

Here we would like to insert another argument to sup-
port the weakness of the impurity effect in the TL liquid.
The TL liquid used to derive G (x,t) is based upon the
perturbative renormalization group theory in the weak-
coupling regime. It is possible to have a quantitative
diAerence in the strong-coupling regime. Fortunately we
know the ground state wave function of the 10 Hubbard
model at U ~ [8], so that we can calculate the matrix
element of the impurity scattering Hamiltonian, H;m~
=g; u(2kF)e ' 'c;~; . We have chosen the 2kF com-
ponent of the impurity potential since it gives rise to the
resistivity (and eventually localization) in the nonin-
teracting case. The matrix element for the low energy
limit, (kFiH; zi

—kF), is most important for transport
properties, where i

+' kF) is an eigenstate with total
momentum ~ kF.

For the U ~ Hubbard model the lowest energy state
With ~ kF is given by i

+ kF) =4( + 2kF)@H( -+ kF),
where S is a Slater determinant of spinless fermions rep-
resenting the charge degrees of freedom and +H is an
eigenstate of the 5 =

2 Heisenberg model with
"squeezed" spin coordinates [8]. These states consist of a
holon excitation just above its ~2kF Fermi surface as
well as a spinon excitation above the + kF Fermi surface.
Analysis of the quantum numbers in the Bethe ansatz
shows that 4H(+ kF) is exactly the same as the eigen-
state of the Heisenberg chain with total (crystal) momen-
tum ~ tr/2. Using these initial and final states, the
matrix element (kFiH; ~i

—kF) becomes zero because
(&PH( —kF)i@H(kF)) =O. Here the charge part and spin
parts are decomposed because of the summation over spin
in H; p. The charge part can have a nonzero value but
the spin part is identically zero. This fact shows that spin
degrees of freedom are not scattered in the large-U limit
[2O].
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Let us compare with the result of the TL liquid
scheme. 0; & can be represented in terms of two Bose
fields and it is straightforward to calculate the matrix ele-
ment as (kF ~H;m~~

—kF) =1/L ' . tts dependence on
(i+a, )/2

K~ essentially reproduces the result of renormalization
group studies: For the repulsive case (K~ (1) this matrix
element has a stronger size dependence than in the nonin-

teracting case (K~= 1 ) and thus leads to Anderson locali-
zation. Comparison of the two matrix elements shows

that the coefficient of 1/L ' can easily depend on U(i+a, )/2

so that in the large-U regime, it can be zero or small if
any. Therefore the crossover temperature, below which
the eAect of impurity becomes dominant, can be very low
in the large-U region. This is consistent with our observa-
tion in the conductivity. The exponent a is largest
(a = —,

' ) at U ~ and the impurity eff'ect is weakest.
Next we study the optical conductivity. For this pur-

pose the Green's function for T & co is necessary. We use
zero temperature Green's function for simplicity. Substi-

t

tution of G into the conductivity formula gives

e kF v t(l —2a)
o co, T=O

4v, v, acostra 2v, A

2g
M

2v, A

2c
1

—iso+ co tanya

It is clear that the relaxation rate has a linear co depen-
rdence and 1/z =catantra. One interesting point is that

the coefficient of co is proportional to a for small a. It is

independent of v, —v„which was essential for 1/z —kttT.
This small coefficient is required from the sum rule,
(2/tz) Jo dco Reer(ro) =ne /m, since the numerator of
o.(cu) is proportional to co '. Of course the sum rule is

not completely satisfied because of the restriction of va-
lidity of TL liquid Green s function, which is only up to
to —v/A

Finally we briefly discuss the possible relation to exper-
iments. As we can see, if the system approaches the Fer-
mi liquid (a 0, v, v„and thus v — ~), the coef-
ficient of the linear-T term becomes smaller and smaller.
At the same time the impurity eA'ect becomes stronger.
It may happen in high-T, materials in the overdoped re-
gime as the hole doping increases. As we can see, the
linear m dependence of the relaxation rate also vanishes
as the system approaches the Fermi liquid. On the other
hand, when the system is a TL liquid and the crossover
temperature is higher than T„a precursor of localization
will be seen above T„as discussed above. For the appli-
cation to higher dimensions, we assume the "tomograph-
ic" TL liquid which has a cut in the Green's function
along the perpendicular direction of the Fermi surface.
To estimate the Hail angle the spinon-spinon interaction
causing relaxation time z~~ has to be taken into account.
Our calculation can be directly used for the quasi-one-
dimen- sional conductors which will be realized in organic
conductors and mesoscopic systems.

We are indebted to T. M. Rice, H. J. Schulz, W.
Kohn, N. P. Ong, B. Batlogg, H. Takagi, F. D. M. Hai-
dane, A. Tsvelik, T. Giamarchi, and C. L. Kane for many
illuminating discussions.
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