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Di8'usion-Limited Fractal Growth Morphology in Thermodynamical Two-Phase Systems
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A supercritical nucleus with isotropic surface tension growing in a diAusion field is found to evolve into
a fractal structure at long times and small driving forces. A newly developed numerical method using a
rotated-lattice sandwich handles the anisotropy problem of the moving boundary. Scaling relations are
found in agreement with a recently formulated theory.
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Growth phenomena are attracting increasing interest in
all fields of science [1,2]. Despite the vast variety of pos-
sible pattern-forming phenomena there exist some univer-
sal and rather simple processes which are still poorly un-
derstood. One of them is the shape evolution of a super-
critical nucleus growing in a two-phase system, for exam-
ple, a crystal growing from a supersaturated solution.
This is one of the simplest pattern-forming processes con-
ceivable under essentially homogeneous nonequilibrium
conditions. Surprisingly, it is still rather unclear what
happens for long times in the limit of vanishing crystal-
line anisotropy, as in the case of a liquid droplet nucleat-
ing from a mixture of two liquids.

It has been known for about three decades [3] that
such a growing nucleus becomes unstable as its radius be-
comes larger than a few times the critical radius. If the
surface tension is anisotropic, for example due to crystal-
line anisotropy, it is generally believed that the nucleus
finally deforms into a dendritic pattern such as a snow-
flake [4-6]. What happens in the limit of vanishing an-
isotropy, however, is much less clear.

In conventional models of diAusion-limited aggregation
(DLA) atoms perform a random walk until they stick at
a previously aggregated cluster [7-10]. We call these
models nonthermal because there is no surface tension.
Recent computer simulations have lead to a scaling con-
cept [9] for this nonthermal diffusional aggregation which
explains the selection of the growth rate v of the advanc-
ing envelope of a fractal interface. Surface tension, on
the other hand, is present in the SaAmann-Taylor prob-
lem [11] of an inviscid fluid penetrating a viscous fluid.
This case, however, is described by Darcy's law or the
Laplace equation [10-14] while we discuss the fully
time-dependent diAusion equation which, in principle, has
much richer dynamics.

A recently proposed [15] morphology diagram relating
the various patterns is based on some as yet unproven as-
sumptions. It is the purpose of the present work to inves-
tigate the limit of vanishing anisotropy of the surface ten-
sion numerically for a nucleus growing in a diAusion field
which is asymptotically homogeneous. A recent numeri-
cal investigation [161 which gave the first quantitative
evidence for a morphology transition between compact
dendritic and seaweed structures did not yield conclusive

u, -A —dp[1 —e cos(mO)]K, (2)
—Dn Vu, =v„. (3)

Equation (1) is the fully time-dependent diffusion
equation (i.e. , without quasistationary approximation
[17]). Equation (2) is the boundary condition for the
diA'usion field u at the interface; at infinity one has u =0.
Equation (3) is the conservation law for the solute or im-

purity at the interface; v„ is the normal velocity of the
moving boundary. u(x, z, t) is the normalized diflusion
field [4,6], 5 6 [0, 1] the normalized supercooling, D the
diA usion coefficient, do the capillary length, e the
strength of the m-fold crystalline anisotropy, and K the
curvature of the interface. The Mullins-Sekerka length

pMs =2tr JdplD is the parameter which characterizes in-

terface instabilities; lD =2D/v is the diffusion length.
A typical problem is that a lattice introduced for the

numerical treatment of the difl'usion equation (1) au-
tomatically introduces some anisotropy, even for e =0 in

(2). The basic idea for reducing this undesirable anisot-
ropy is to use a rotated-lattice sandwich constructed in

the following way. We first define an outer frame which
consists of a channel formed by two rigid sidewalls. The
deformable moving boundary runs across the channel and
the distant fourth boundary is kept straight but mobile.
The diAusion field responsible for the structure formation
of the moving boundary acts only inside this frame. Con-
cepts like a random self-adaptive grid of anchor points for
the diffusion-field [18] or grid-generation methods popu-
lar in finite-element calculations [19] turned out to be too

evidence concerning the asymptotics behavior for low
noise and anisotropy.

We will now briefly describe our numerical procedure
for systematically reducing the anisotropy caused by the
computational grid. For simplicity we restrict ourselves
to two dimensions. Details will be published elsewhere.

We discuss here the so-called one-sided diAusion model
[4-6] which accounts for chemical diffusion. It is easily
generalized to a two-sided model with independently
definable material properties on both sides of the moving
interface:

rl u(x, z, t) DV'u(x, z, t)—,
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time consuming. Other methods with h
' f

[20 21] or a,21 or a phase field model [22,23] have also not suc-
ceeded in producing definite results up to now. Our pro-
cedure is to map this frame onto two or more independent
regular lattices which are shifted by irrational amounts
and rotated against each other. Most of the simulations
were performed on a stack of four lattices leaving no
four- or eightfold anisotropy; even higher-order anisotro-

py was not detected within our numerical accuracy.
At each time step we solve the dift'usion equation on all

lattices independently using the boundary conditions
along the frame and then calculating the diA'usion flux at
the moving boundary. For this purpose, a curvilinear set
of curves parallel to the boundary at fixed distance is
used. On this set, the values of the diAusion field are ob-
tained by interpolation from the underlying lattice. We
then locally advance the moving boundary independentl
on all 1lattices and average the resulting new boundary po-

en y

sition over all lattices.
A circular geometry for the moving boundary is even

simpler to realize. Channel geometry turned out to be su-
perior for good statistics and for comparison with recent
predictions [15]. ThThe moving interface was always kept
approximately at the center of each lattice. We have per-
ormed numerous tests, for both circular and channel

geometry, with and without surface tension, as well as
with and without anisotropy. For constant growth rates
the stationary results agreed within a few percent with
our previous simulation results based on a (by definition)

ully isotropic Green's function method [17] in quasista-
tionary approximation. The speed of both methods is

—
1D g —0.7

comparable for the same resolution, although there is

somewhat more noise produced by the present fully
time-dependent scheme.

In particular, we confirm the recently reported [24]
transition from symmetrical to parity-broken fingers [Fig.
1(a)] in channel geometry (note the difference between
time-dependent and Laplacian growth in this case [25]),
and we also confirm the scaling behavior of free dendritic
growth with anisotropy [25,26] down to capillary aniso-

tropies e~ =0.05 (in agreement with Ref. [17]). The
parity-broken finger appears to represent a branch of
solutions which moves significantly faster than the corre-
sponding dendritic solutions in the channel, even at
nonzero but sma11 anisotropy.

In Fig. 1(b) we present a snapshot from a long-time
simulation of a moving boundary in a channel, but in con-
trast to Fig. 1(a), now with periodic boundary conditions.
In the center one clearly sees structures similar to Fig.
1(a), as if two parity-broken dendrites try to stabilize
each other. We call this compact seaweed: "Seaweed"
because of missing anisotropy and "compact" since there
is no indication of "fractality" as discussed below. The
structure selects a unique velocity and an associated
characteristic length for the pattern independent of the
channel width (for sufficiently wide channels), as predict-
ed by a recent conjecture [15]. For 6~0.6 the charac-
teristic length should be of the order of the stability
length pMs, which is consistent with our findings. A de-
tailed test of the predicted variation [Eq. (11) of Ref.
[1511 w& ~ with h, near 0.5 was not yet possible because of ex-
treme requirements of computing time and storage.

Fractal seaweed patterns were predicted [15] to occur
at supercoolings belo~ h, =0.5, advancing at a well-

defined average growth rate. A true fractal object, of
course, can only occur on infinite structures which means
infinite i usion length ID ~. Our numerical 1ta res u s

ig. 2) are consistent with the existence of such fractals
over a finite range, as in the case [9] of lattice aggregates

a) b)
FIG. l. (a) Parity-broken finger growing from a time-

dependent diffusion field in a wide channel with re+ecting con-
itions on the sidewalls. A growth rate is selected essentially in-

dependent of the channel width 8', the sidebranches occur at
ic en rite growing atthe same wavelength as on an anisotrop d d

'

t e same velocity. (b) Channel growth with periodic boundary
ures i e t e parity-brokenconditions at the walls. Structure 1'k th

ngers in (a) are visible inside this compact seaweed pattern.
The diffusion length here is only about 10%%u f h h

wi t . e growth rate is only 15'%%uo slower than in (a). This
supports the idea [15I of a growth rate selection mechanism in-
trinsic to the pattern. Parameters were D=1, h, =0.7; ( 'ja
do=0. 375, 8'=300, 1D =38; (b) do=0.434 W=

lengths are given in lattice units; lattice size
= 1121 x 1121.

FIG. 2. Fractal growth pattern in a wide channel (relative to
the diAusion len th
D=l h, =

g at low supercooling. Parameters we ers were

the narrow
=0.35, do=0.0068, 8'=700 / =182 Th d h

e narrow troughs is about equal to the Mullins-Sekerka
lengt .
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in the nonthermal model. The diffusion length lD again
was small compared to the channel width 8. Our control
parameters were supercooling 6 =0.35, isotropic capillary
length do =0.0068, and e =0. We therefore can assume
that the central part of the moving interface is essentially
unperturbed and behaves just like an initially circular
surface of a growing nucleus after very long time.

The local fractal dimension as a result of a box-
counting analysis of this pattern is shown in Fig. 3. To
minimize boundary effects, only the central third of the
channel was used. Both at small and large length scales
one expects a value of 2: On small scales the interface
looks smooth; there are no structures smaller than the
stability length pMs. On large scales, one has a constant
average density. On intermediate scales one sees a frac-
tal dimension of about Df = 1.73 which consequently
should be taken as an upper bound for the fractal dimen-
sion to be obtained in the limit lD ~. A similar
analysis for the length of the moving boundary yields a
fractal dimension D~~= 1.66 as the fractal dimension of
the perimeter of the growing structure.

This analysis is furthermore supported by comparison
with the recently proposed [15] scaling equation for
dependence of the growth rate v on the supercooling h,

and effective noise I (the dimensionless I measures the
relative amplitude of interface fluctuations in units of
wavelength pMs):

t' —Dl'dol]ni I
'~, v=2/(2 —Df) . (4)

The observed velocities of the leading tip at three
different values 5 =0.35, 0.393, 0.44 for the supercooling
can be matched with an exponent @=6.0, from which
one obtains with the help of (4) a fractal dimension

Df (scaling) = 1.66. A conjectured universal value Df

a.0
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FIG. 3. Local fractal dimension Df(L) from box-counting

analysis of the fractal patterns (like in Fig. 2) plotted vs the

logarithm of the box size L. Symbols correspond to doubling of
box size. The central plateau extends laterally over more than

an order of magnitude and gives a fractal dimension of
Df = l, 73.

=1.71 would give @=7, while the scaling of the non-
thermal model [9] would suggest iit=3. 5. Clearly, our
results favor Eq. (4), which follows from the concept of a
velocity-dependent small-scale cutoff' [15] for the scaling
region. Admittedly there are some uncertainties in our
values for the fractal dimensions. In any case they obey
the inequality Df ~ Df and 1.66 ~ Df ~ 1.73. Within
this uncertainty our result is quite consistent with a value

Df = 1.71 obtained for the fractal dimension [8] of a 50
million particle cluster of nonthermal aggregation in iso-
tropic space.

Finally we made an attempt to estimate the strength of
the eff'ective noise ~]nl ( entering (4). The space and time
discretization of the interface motion is a source of noise
which was not directly considered previously [15]. For
parameters such as those used in Fig. 2, we estimated
~lnl

~
to be of order unity according to amplitudes of side-

branches of simulated dendrites. This agrees with the
value needed to match the amplitude in (4) with the data.
This is consistent with the predictions [15]; it does not, of
course, exclude the possibility that the fluctuations lead-
ing to the irregular fractal shapes are also of intrinsically
dynamical origin as assumed for the high-speed region.
Because of the substantial computing requirements need-
ed to finally check the scaling exponent of the noise in (4)
we must leave that point open at present.

In summary, we have found in our numerical simula-
tion of a two-dimensional droplet growing in a diffusion
field that it evolves into a structure at long times which
may be characterized as a finite-range fractal object at
low values of the supercooling. Its fractal dimension
seems to agree with the fractal dimension observed for
atomistic nonthermal Laplacian growth supporting a re-
cent conjecture [15] about universality. This seems to be
the first observation of such a fractal growth process in an
isotropic system close to thermal equilibrium.
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