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Experiments and Particle-in-Cell Simulation on Self-Oscillations and Period Doubling
in Thermionic Discharges at Low Pressure
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The mechanism of diAerent discharge modes, self-oscillations, and the period-doubling route to chaos
is studied by comparing experimental results from a filament cathode discharge with particle-in-cell
simulations. The self-oscillation process invokes ion trapping by charge exchange, double layer forrna-
tion, and ion depletion. The exhausting of resources which underlies the period-doubling route is

identified with incomplete ion refilling.

PACS numbers: 52.35.Fp, 47.52.+j, 52.65.+z

Discharges with filament cathodes at pressures of about
10 ' Pa are in widespread use in magnetic box devices
[1], double plasma arrangements [2], or ion sources [3].
Their inherent hysteresis of the I(U) characteristic [4,5]
has attracted much interest from the viewpoints of catas-
trophe theory [6] and nonlinear dynamics [7]. Under
certain discharge conditions thermionic discharges per-
form low-frequency oscillations [8], which can be driven
to chaos either by varying the discharge parameters [9]
or by applying external modulation [10]. Routes to chaos
via intermittency [11] and period doubling [7,12] were
observed. Cheung and Wong [7] have discussed the role
of ion dynamics and electron neutral collisions in period-
doubling scenarios. In the present paper we intend to
identify the detailed interplay of plasma processes, which
lead to period-doubling transition to chaos.

Our investigations are performed in a magnetic box de-
vice with filament cathode [12] (Fig. 1). This device has
been selected as a typical representative of this class
of discharge. The discharge is operated in argon at p
=0.03-0.3 Pa. The anode voltage can be modulated by
additionally applying periodic pulses of a few kHz fre-
quency. The spatiotemporal evolution of plasma parame-
ters and plasma potential is measured with movable
Langmuir and emissive probes.

The general behavior of this discharge is compiled in

Fig. 2. The 1(U) characteristic shows the well-known

hysteresis curve. The upper branch represents the "tem-
perature-limited mode" (TLM); the lower branch is the
"anode-glow mode" (AGM) in the classical terminology
for thermionic discharges [13,14]. In our case the states
are similar to the above-mentioned collisional discharges
despite the fact that the mean free path for electron and
ion collisions with neutrals is comparable to the plasma
dimensions. For these low pressure thermionic discharges
the AGM is established by producing ions in the anode
sheath and trapping them by charge exchange in the po-
tential well of the virtual cathode. The resulting plasma
potential distribution [Fig. 2(b)] shows a cathodic plas-
ma, which is close to the cathode potential, and an anode
layer, where the plasma potential increases to anode po-
tential. From the discharge current we estimate the elec-

tron density to be of the order n, =10' m . In the
TLM, the plasma potential distribution is homogeneous
and close to anode potential [Fig. 2(a)] except for a
cathode sheath which is not accessible by emissive probes.
The plasma parameters n, =10' m and T, =2 eV are
obtained from Langmuir probes. Self-oscillations of the
discharge current with large amplitudes [Fig. 2(d)] are
observed in the AGM close to the right hysteresis point.
Their typical frequency lies between 1-2 kHz and de-
pends on the detailed discharge parameters. The plasma
potential increases during a current spike [Figs.
2(c),2(d)]. Potential and current spikes have a fast rising
edge and a more gradual decay.

Large amplitude oscillations have been studied exten-
sively via computer simulations for thermionic plasma
converters and Q machines [8,15,16]. In our simulations
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FIG. l. Magnetic box discharge with filament cathode. A

pulse generator is used for external modulation. The diagnostic
tools are movable Langmuir and emissive probes.
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FIG. 2. Ex erimental results. Cent rp
'

. enter panel: 1(U) hysteresis curve. Plasma potential distribution of the (a) temperature-limited
mode and (b) anode-glow mode. The potential contours are recorded along the chamber axis. (c),(d) Experimentally obtained self-
oscillations of plasma potential and discharge current.

the PIC-MCC code pDPI [17] is used, which has one
space dimension but three velocity components, and in-
cludes elastic, inelastic, charge exchange, and ionizing
collisions. The self-spiking process is studied at a more
realistic mass ratio (m;/m, =10000) than reported in

[18]. The simulation parameters are chosen very similar
to laboratory conditions (i.e., gas pressure P=0.06 Pa,
discharge voltage Ud =20 V, length L =15 cm, filament
temperature Tf =2300 K, collision cross sections for ar-
gon). The simulation starts with an empty electrode gap,
and ion trapping by charge exchange fills the cathodic
plasma. In the absence of ion losses the simulation al-
ways shows current spikes [Fig. 3(a)] and an increase of
plasma potential. Including ion losses, self-spiking is only
observed above a critical discharge voltage. The evolu-
tion of electron and ion phase space as well as the poten-
tial distribution during a single spike are given in Fig.
3(d). The sequence of events can be described by a filling
phase (panels 1 and 2), during which ions are produced
in the anode sheath and are trapped in the cathodic plas-
ma, while the potential distribution is of AGM type. This
cathodic plasma gradually expands towards the anode.
Once the cathodic plasma becomes ion rich, the plasma
potential in the cathodic plasma rises (panel 3). An elec-
tron hole [19] forms and transforms into a double layer
(panel 4). By the double layer's electric field, electrons
as well as ions of the cathodic plasma are accelerated in

opposite directions. We always observe electrostatic
waves at the plasma frequency which travel towards the
anode. Ions streaming into the cathode sheath reduce the
negative space charge and further enhance the current
(panel 4). The accelerated ions represent an appreciable
loss of ions in the cathodic plasma on the high potential
side of the double layer which ultimately leads to its de-
struction. Finally, the current pulse is quenched by the
formation of a negative potential dip [Fig. 3(c), panel 5].

0.8 2

O.O

-0.4
Q -0.6-

to ps
I I

5

6
~ ~

FIG. 3. PIC simulation of self-spiking process. (a) Dis-
charge current, (b) plasma potential at x =7.5 cm, and (c)
minimum plasma potential. The dashed line marks cathode po-
tential. For (a) to (c), the horizontal axis is the time. (d)
From left to right: Plasma potential (scale @= —22-0 V), den-
sity distribution (dotted lines n;, straight lines n„scale n, ;
=0-2.67&&10' cm ), electron phase space (scale v, =+2.5
x10 m/s), and ion phase space (scale v; = ~2.5x IO m/s) for
the instants marked in (a). Cathode position is on the left
(x =0 cm) and anode on the right (x =15 cm).
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