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Far-Dissipation Range of Turbulence
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Navier-Stokes turbulence at low Reynolds number (7Zp 15) is studied by high-resolution com-
puter simulation. The energy spectrum in the range 5k' & k & 10k' is well fitted by k" exp( —ck/ks),
where A:g is the Kolmogorov dissipation wave number, n 3.3 and c 7.1. High-order spatial
derivatives of the velocity field exhibit strong intermittency, associated with gentle spatial varia-
tion of large-scale structure rather than with sparse, intense small-scale structures. Analysis by the
direct-interaction approximation, which ignores intermittency, gives o. = 3, c —11.

PACS numbers: 47.27.Gs

The smallest scales of incompressible, isotropic Navier-
Stokes turbulence are associated with the far-dissipation
range of wave numbers k )) kd, where kg ——e / v / is
the Kolmogorov dissipation wave number, e is the rate
of dissipation of hydrodynamic kinetic energy per unit
mass, and v is kinematic viscosity. Most of the dissipa-
tion takes place at k & kd. The wave numbers k )) kd
have attracted attention for a number of years. There
has been controversy concerning the asymptotic form of
the energy spectrum as k ~ oo. The smallest scales are
of further interest because they display strong intermit-
tency even at Reynolds numbers so low that there is no
basis for a fractal cascade.

It is reasonable to assume that the wave numbers
k )) kg represent spectral tails of fiow structures of
spatial scale & 1/kd. An analogy is the exponential
spectral tail of a shock that obeys the Burgers' equa-
tion. There are other possibilities. One is that very-
high-wave-number excitation comes mostly from excep-
tionally strongly strained regions that give rise to ob-
served exponential-like skirts of the probability distribu-
tion function (PDF) of vorticity.

A number of authors have discussed kinetic energy
spectra for k )) kg of the form

E(k) cc f(k/kd, ) exp[ c(k/kg) "]—,

where c is a constant, f is a weak function of k/kd, and
1 & n & 2 [1—9]. The direct interaction approxima-
tion (DIA), a perturbative treatment, gives n = 1 and
f oc (k/kd) [2]. Perturbation approximation can be jus-
tified for k )) kd because the mode amplitudes are very

E(k) oc k exp(-ck/kg) (2)

seems consistent with a body of experimental and corn-
puter data [8,9].

Strong intermittency in the far-dissipation range at
low Reynolds numbers was predicted some years ago
on the basis of a simple physical argument [10]: E(k)
falls oK steeply for k )) kg. Consequently, mild Huctu-
ation, on spatial macroscales, of parameters like kd in

(1) yields spatial intermittency at scales O(1/k) that in-
creases without limit as k/kd ~ oo.

An ongoing computation project has achieved resolu-
tions up to 512s (wave-number range 1 & k & 256) on
a CM-200 computer at Los Alamos National Laboratory
[11].The direct numerical simulation (DNS) described in
this paper was limited by arithmetic precision rather than
its resolution of 256s (wave-number range 1 & k & 128
in a cyclic cube of side 2ir). A nominal steady state was

nearly the linear response, under molecular viscosity, to
quadratic forcing by modes of lower k [10]. The addi-
tional, unjustified assumption in the DIA analysis is that
the statistics of all scales are nearly Gaussian.

Foias, Manley, and Sirovich [4] have shown that n & 1,
under certain assumptions of smoothness of the velocity
field in a finite box. The plausible efFect of the intermit-
tency observed in the far-dissipation range is to enhance
mean nonlinear transfer and thereby raise the spectrum
level above that predicted by DIA. These two facts to-
gether suggest that the DIA value n = 1 may be exact
for a finite box while n ) 1 is unlikely [3]. The particular
form
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FIG. 1. Linear-log plot of E(k) vs k. Solid line, DNS spec-
trum; dotted lines, subregional spectra with largest, median,
and smallest values of E(k = 60); dashed line, DIA spectrum.

FIG. 2. The function k din E(k)/dk vs k for the DNS spec-
trum. The straight line is a least-squares fit to the data points
for 50 & A: & 100.

maintained by forcing [ll] that, at each time step, we
reset the magnitude (but not the phase) of mode am-
plitudes for A; & 3 to levels picked to give the desired
value of the time-averaged Taylor microscale Reynolds
number 'Rg. The simulation ran for approximately 40
box-size eddy-turnover times. The Taylor microscale A

for an isotropic turbulent fiow is a length defined by
A = (15vvos/e)i~s, where vtI is the mean-square velocity
in any direction, and 'R& = voA/v.

The solid line in Fig. 1 represents a time average of
E(k) for a run with v = 0.026, 'R~ = 14.9, k~ = 9.65.
This 'Rp is so low that there is no basis for a fractal
cascade. Figure 2 shows k din E(k)/dk vs k for these
data. If E(k) has the form (2), the data fall on a straight
line whose slope is —c/kg and whose intercept on the
vertical axis is o, . The straight line in Fig. 2 is a least-
squares fit to the data over the range 50 & k & 100,
where the fit is excellent. Points k & 50 are excluded
because the data there curve away from a straight line,
and k & 100 is excluded because of truncation artifacts
near A: = 128.

The fit gives c = 7.1, n —3.3. Equation (2) seems
well supported. The confidence level for o. is hard to
quantify because it is not certain that the wave-number
range is long enough to give strictly asymptotic results.
The value n = 1 in (1) does seem strongly favored.

A previous study [8] gave a negative value for o, . The
range used for fitting in [8] was 0.5k' & k & 3k', which is
too low to give asymptotic behavior. An intercept n = 0
corresponds to tangency at k = 30 —3k~ in Fig. 2 [12].

The dotted lines in Fig. 1 show the spectra in three
subregions of the cyclic box, defined by the x-space filter
exp[ —~x—x,

~
/(vr/16) ], where x, is the subregion center.

The nominal linear dimension of a subregion is thus 7r/8.
In order to sufn. ciently reduce errors from chopping, the
cyclic box is repeated in each direction to give a total of
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FIG. 3. PDF P(iv) of the field ur = (—V ) u, for m = 0
(dashed), m = 2 (dotted), and m = 4 (solid), averaged over
i=1 23.

33 replicas before the filtering. The filtered field is trans-
formed to k space and subjected to solenoidal projection
before the spectrum is computed.

We find that the distribution of spectral slopes over a
set of 64 subregions, evenly spaced in the cyclic box, is
consistent with the picture of intermittency [10] in which
the parameters describing the spectral tail are slowly
varying functions of spatial position. The three subre-
gion spectra plotted in Fig. 1 are those with minimum,
median, and maximum values of E(k = 60). Note that
the maximum and minimum values of E(k = 60) differ

by a factor of over 10, despite the small difference in
slope.

Figure 3 shows PDFs of the differentiated velocity
fields (—'7 )~u;, averaged over the three components
i = 1, 2, 3. Note the marked increase of intermittency
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FIG. 4. Perspective view of the surface where ~V ui
~
equals

twice its root-mean-square value.

with m. Figure 4 is a visualization of the field 7' ui.
The shaded surfaces are where the absolute value of
field amplitude equals twice its root-mean-square (rms)
value. The apparent three dimensionality of these regions
(confirmed by interactive visualization) suggests inter-
mittency that is associated with gentle spatial variation
on principal dissipation scales rather than with excep-
tional regions that are strongly strained into thin sheets
or tubes. The fiatness ((7'sui) )/((7'sui) ) is 57. This
large value is associated mostly with the sharp peak of
the PDF at zero amplitude, rather than with the broad
skirts at large amplitude values. The latter represent
probabilities too small to have much effect on low-order
statistics.

The spectral support of the field 7'sui is efFectively
confined to the range 15 & k & 40. A field with spec-
tral support confined to 50 & k & 100, the region where
E(k) is accurately proportional to k exp( —ck/kq), can
be constructed by applying the filter exp[ —(k —75)2/200]
to the wave-vector transform of ui(x) and transforming
back to x space. Figure 5 shows the regions where the
absolute value of the amplitude of this field exceeds twice
its root-mean-square value. The field 9'z ui has approx-
imately the same spectral support, but it is too noisy to
give clean visualizations.

The similarity between Figs. 4 and 5 is striking. The
regions of high intensity are in the same locations and
have similar shape, but are smaller in Fig. 5. The similar-
ities survive moderate changes in the choice of amplitude-
to-rms ratio for visualization. This behavior suggests
that the spectral support of the very small scales repre-
sents the spectral tail of larger structures. Similar behav-
ior is exhibited by repeated differentiation of the velocity
profile of a Burger's shock.

The small-scale structure portrayed in Fig. 5 is quite
unlike the intense vortex tubes that characterize simula-
tions at higher Rp [13—15]. Nevertheless, Fig. 3 looks like
plots of PDFs of velocity derivatives at higher R& [13—15].
Clearly, one-point PDFs provide insufFicient information
to infer the form of structures. It must be emphasized
that Rp in our simulation is too small to support an
inertial-range cascade and fractal intermittency buildup

FIG. 5. Perspective view of the surface where the absolute
value of the filtered field with spectral support centered at
A: = 75 equals twice its root-mean-square value.

that may be associated therewith [16]. We cannot assert
from the present results that (2) remains valid at high

Integration of the DIA equations with the same forc-
ing and viscosity as in the DNS yields the dashed line
in Fig. 1. The DIA spectrum tail (n = 3, c = 11) falls
within the range of DNS subregion values, but below the
median. There are two obvious causes for discrepancy
between DIA and DNS. One is the depression of high-k
energy transfer in DIA by sweeping effects in response
functions [2]. At k = 75, the sweeping decorrelation fre-

quency vok is about 30% of the viscous decay frequency
vk2. Two-point closures that are invariant to random
Galilean transformation do not display the strong sweep-
ing decorrelation at large k [17].

The second cause is the observed intermittency, which
is not captured by DIA. Suppose that one emulates the
set of subregion spectra by a finite-size ensemble of DIA
solutions, each with a different forcing intensity. As
k —+ oo, the mean spectrum over the ensemble is dom-
inated by the ensemble member with the smallest value
of c/kg. Thus the effective value of c/k~ is decreased by
the averaging, while the prefactor exponent n = 3 is un-

changed. The averaging over parameters may improve
the fidelity of the DIA spectrum fit while crudely intro-
ducing strong intermittency at very small scales [10].

The spread in slope of the subregion spectra in Fig. 2
has an implication for the asymptotic spectrum form
in an infinite box. Let the box size increase without
limit while the forcing spectrum and filter width stay
unchanged. Suppose that the spectrum (k ~ oo) in each
finite subregion has exactly the form (2) where k~ is a
function of x, . If any value of kg(x, ), however large, oc-
curs somewhere in the infinite box, then averaging over
all space gives something slower than exponential decay
of the spectrum as k ~ oo. Illustrative example: If
the PDF of k~(x, ) over the infinite box happens to be
oc exp( —k&/k, ), as kq ~ oo, where k, is a constant pa-
rameter, averaging of (2) over this PDF gives an infinite-
box spectrum E(k) oc exp[ —(2i~2ck/k, )2~s] as k —+ oo,
apart from an algebraic prefactor. The bound obtained
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by Foias, Manley, and Sirovich [4] assumes a finite box.
The work reported here supports two principal conclu-

sions about the dynamics of simulated isotropic turbu-
lence at low 'Rp. First, the spectrum shape at k )) kd
can be accurately represented in the form (2); second,
the high-A: part of the velocity field is very intermittent
despite the low value of 'R~. The intermittency in our
simulation is associated with gentle spatial variation of
large-scale parameters, in contrast to the intermittency
at higher 'Rp linked to strongly localized intense vortex
structures. Despite this contrast, the PDFs of high spa-
tial derivatives of velocity look qualitatively the same at
low and high values of Rp.
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