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Topology Transitions and Singularities in Viscous Flows
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Topological reconfigurations of the boundaries of thin fluid layers in Hele-Shaw flow are studied. A
systematic treatment of the dynamics of the bounding interfaces is developed through an expansion in

the aspect ratio of the layer, yielding nonlinear partial diA'erential equations for the local thickness. For
both density-stratified fluid layers and gravity-driven jets, numerical study of the dynamics at second or-
der suggests strongly the collision of the interfaces in finite time. There are associated singularities both
in the fluid velocity and in geometric properties of the interfaces.

PACS numbers: 47.20.—k, 02.40.—k, 03.40.Gc, 68. 10.—m

Topology transition is the common and central feature
of phenomena as diverse as vortex reconnection in hydro-
dynamics, the coarsening of soap froths, and the forma-
tion of Iluid droplets. Figure 1(a) shows a simple physi-
cal realization of the latter: the detachment of a pendant
drop in a Hele-Shaw cell [1]. This example is especially
interesting as the transition involves surfaces material to
the flow, and their reconfiguration must entail a singulari-
ty in the velocity field. Similar issues have arisen in stud-
ies of possible singularity formation in the Euler equation
[2,3] and convection in porous media [4].

Here we describe a theory of the approach to topology
transition in the Hele-Shaw approximation, wherein vis-
cosity dominates and Darcy's law governs the dynamics.
We consider gravity-driven phenomena in two distinct sit-
uations involving the interaction of two interfaces, I ~ and
r, , which bound a thin layer of fluid lying between two
other immiscible fluids, as in Fig. 1(b). In the first case,
an unstable density stratification, p~ & p2 & p3, with gravi-
ty pointing normal to the layer, drives the interfaces to-
gether. The second, more directly relevant to the experi-
ments, is the gravity-driven jet, with p~ =p3&p2, and
gravity pointing along the layer. Our focus is first on
questions of geometry such as: Are there singularities in

h, (x, t) = —t) [h(h„+B(1+a'jY[h„]))], (2)

for the density-stratified layers and gravity-driven jets,
respectively [7]. Here, P is the Hilbert transform, a
=It~/p2 is the ratio of Iluid viscosities, and the dimension-
less "Bond number" 8 measures the relative importance
of buoyancy to surface tension o.,

the shape of colliding interfaces? Second, we ask about
dynamical phenomena such as: What is the nature of the
fluid velocity field in the neighborhood of the collision?

In addressing these questions, we consider antisym-
metric perturbations to the width of the thin layer, and
using the aspect ratio of the layer as a small parameter,
derive governing partial differential equations (PDE's)
for the half-width h(x, t) by a systematic expansion from
the boundary integral formalism [5]. These results com-
plement an earlier more heuristic discussion by Constan-
tin et al. ([6] referred to as C93), on Ilows in the absence
of gravity. Truncation of these expansions at second or-
der yields an approximation known as lubrication theory.
In rescaled form, these lubrication equations are

h, (x, t) = —a„[h(h„„. Bh.)]—
and

B =2g/5pL /o, (3)

where L is a lateral length scale.
The dynamics in (1) and (2) satisfy a continuity equa-

tion reflecting the fluid incompressibility

(a) h(+ j =0, j =hU, (4)

(b)

Ps Ps

Pa Pa

Ps Pi

where the current j is proportional to the thickness, as in

shallow-water theory [8]. The flux form of the equations
of motion implies that the vanishing of the layer width h

at any point is associated with a divergence of the velocity
gradient U„(see C93). That is, let X(t) locate a
minimum of h that reaches zero at a finite time t*. Then

FIG. I. (a) Detachment of a pendant drop in Hele-Shaw
flow, from [ll. (b) Geometry of thin layers in the two cases
considered in the text.

h(X(t), t) = —h(X(t), t)U„(X(t),t ) .

It follows then that if there is a finite time t* such that
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h (X(t),t) 0 as t t*, then U„(X(t),t) +~ as
t t*. In the presence of surface tension, this implies
that at least h „diverges at the interface osculation.

Numerical evidence is presented strongly suggesting
that the thickness of the fluid layer can indeed reach zero
in finite time (pinch), starting from strictly positive initial
data. This is interpreted as the signature of a topology
transition. At the same time, the simulations reveal
finite-time singularities in the shape of the interface.

We begin with the assumption that the fluid velocities

vj obey Darcy's law,

b2
vJ = — (VPi+ piVp), (6)

1 2pg

where b is the gap width of the cell, Pj pj and pj are the
pressure, density, and viscosity in each fluid, and F
= —Vp is a divergence-free body force (i.e. , gravitational
force). By the incompressibility constraint, V. vJ =0, the
pressure is harmonic and acts as the velocity potential,
and so the velocity field is irrotational. At an interface
I j, we impose as a boundary condition that the pressure
jump is PJ —Pj+] = —oz. re&, where xj is the interfacial
curvature and oj is the interfacial tension. The require-
ment that the interfaces move with the fluids gives the ki-
nematic boundary condition nJ" (vJ —vi+1)Ir, =0, where

nj is the normal to I j. It follows that the velocity field
can be expressed as that arising from a superposition of
vortex sheets on I 1 and I"2 [9]. Adopting a complex rep-
resentation, zJ(p, t) =x~ (p, t)+iy~(p. , t) is the location of
a point on the interface I j, parametrized by a "Lagrang-
ian" variable p. In terms of as yet unknown vortex sheet
strengths yj, the evolution is given by

ez,* '
I +- yt, (p')

(p, t) = g P„,dp', (7)

for j=1,2, where P means principal value (if j=k). The

yi are solutions to the integral equations [5]

yi(p)+22, Re[9pzitl, z,*j =B~ [SJtc, (p) R)y(z, (p) )] . —

(8)
Here, lengths have been rescaled by L, the body force F
by g, while SJ =oJ/O~L JLg, RJ =2(pl —pJ. +~)g/6~ Jlg,
~i =6(pq+pJ+i)/b, and AJ =(pJ pJ+i)/(pJ+pJ+1) &s

the Atwood ratio of the viscosities.
In applying Eqs. (7) and (8) to the problem at hand,

the initial data (and subsequent evolution) are assumed
to be antisymmetric, as in Fig. 1, for these configurations
lead most naturally to the collision of the interfaces. This
is equivalent to the problem of a half-layer against a solid
wall. The two interfaces are then related by z~(p, t)
=z2 (p, t), with y2= —

yl —=y. A simple choice of ma-
terial parameters consistent with this antisymmetry is

p f p3, o~ =o.z, and p&
—pz = ~ (p2 —p3), for Eqs. (1)

and (2), respectively.
Consider now a layer of length / and area A, whose

mean thickness is w =A/i. If we write w =el, then a thin

(0)+ (i)+ (2)+. . . (io)

It is then straightforward to substitute Eqs. (9) and (10)
into (7) and (8) to obtain the interface evolution to any
desired order. Care must be taken to account for near
singular contributions to the integrals in Eq. (7) [10].

In the Eulerian frame, and assuming that the interfaces
z2(x, t) =x+ih(x, t) and zl =z2 remain single valued in

x, the half-width h(x, t) evolves as h, (x, t) =v —uh„(x,
t), where u —iv is the conjugate velocity on 12. For the
cases considered here, we have the central result

h, = —a„[h(y"'+ y"'+ y"'+ y"'e[h„]
+i%[(y ' h) ] —

y (hh„)„8(e ))j. (11)

For density-stratified layers, the potential is p(z2(x))
=h(x). The leading terms in the expansion of the vortex
sheet strengths are y =0 and y

' =(Sh„„—Rh„)/(I
—A~). We then obtain Eq. (I) by absorbing S/(1 —A 1)
into a rescaled time, with B=R/S. The case of the
gravity-driven jet, with p(z2(x)) = —x, is analogous, and

by rescaling time as above we obtain Eq. (2).
The sense in which the lubrication theory properly de-

scribes interacting interfaces is revealed from a linear sta-
bility analysis of a flat interface h =h. Considering, for
example, Eq. (I), the growth rate A, k of a disturbance of
wave vector k is

Xt, = —h(k +8k ), (i 2)

which is in fact the expansion for small kh of the exact
result from the full vortex sheet dynamics [5],

tt, = 2' (Ik I +8lk I)(1 —e I"I")

In this context, the lubrication approximation is valid for
fluid layers whose modulations are on length scales large
compared to their thickness. The dispersion relation
(12) embodies the Rayleigh-Taylor instability of unstably
stratified layers (B (0), with surface tension stabilizing
small wavelengths. The fastest-growing mode has wave
vector k,.„=v —B/2. An analogous stability analysis
for the jet sho~s that the nonlocal contribution from the
density stratification gives a dispersive contribution to the
growth rate, as found in the Benjamin-Ono equation [81.

In the case of the jet, the advective term Bh„can be re-
moved by a Galilean transformation if the boundary con-
ditions are open or periodic (as assumed above). But, fol-
lowing previous work (C93) and in light of Fig. 1(a), we
also consider a jet which emanates from an aperture with

layer means e&(1. Moreover, e is a conserved quantity
since the area, A =el, is constant due to the fluid's in-

compressibility. Thus, we define a rescaled thickness H:

h(x, t) =eH(x, t) .

Since the vortex sheet strength depends upon the inter-
face curvature, x =eH„ /(1+e H, ), and its position
(9), y has an expansion in powers of e:
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FIG. 2. Interface pinching in density-stratified Quid layers,
for 8= —IO. Insets show (top) the vanishing of the minimum
thickness, and (bottom) the divergence of the maximum value
of the dominant contribution to vortex sheet strength.

fixed width 2h0 at x =0, forming the neck of a growing
drop. With these fixed boundary conditions, the advec-
tive term cannot be removed. If the outside fluid is air
(p& =0), then the nonlocal term in Eq. (2) is not present,
and the interface obeys

h, (x,t) = —a„[h [h„„„+a]}. (i 4)

We may then fix the external pressure I', and impose the
Young-Laplace condition h„„(0,t) =P. At the bottom of
the jet, we have h(L, t) =ho and h (L, t) =I'+BL, the
additional term BL accounting for the increase in pres-
sure due to the greater depth in the fluid. The location
L(t) of the bottom boundary is determined by requiring
that the increase in area enclosed by the interfaces is
from inward Aow at the top of the jet, and yields
L, =h„„„(L,t)+a.

Numerical solutions of the lubrication equations (1),
(2), and (14) elucidate the singularity formation [5]. Im-
plicit pseudospectral methods are used to study Eqs. (1)
and (2) under periodic boundary conditions. Figure 2
shows how a sinusoidal perturbation to a thin layer devel-

ops through the Rayleigh-Taylor instability to produce
pinching. Near the pinching time t~, the minimum of h

(Fig. 2, top inset) fits well to a power law h;„(t)—(t~—t)~, with P= 1.45+ 0.05. The accompanying spatial
singularity (Fig. 2, bottom inset) fits a divergence of the
form h„„(t)—(t~ —t )», with @=0.64+ 0.05. Further
increase in the Bond number yields earlier pinching with
structure on smaller scales; the infinite Bond number lim-
it (S=0) is actually a very ill-posed evolution for h.

Conversely, for the gravity-driven jet of Eq. (2), the
limit of vanishing tension gives a well-posed evolution.
Figure 3(a) shows the development of the same initial
condition as above in the limit B ~, with a= 1. In the
moving frame used for the illustration, the location of the

FIG. 3. Dynamics of the gravity-driven jet. (a) The zero
surface tension limit with periodic boundary conditions. (b)
Local jet dynamics with fixed boundary conditions.

U =6C /Sh —8„(82)/Bh ) —=U p+ Ug) . (i 5)

minimum of h actually recedes upwards with time. Here,
the pinching is of a much diAerent form; the interface
minimum vanishes as a square root in time (P =

2 ), and
h diverges at the pinch point. In the previous case, the
presence of surface tension did not prevent the singulari-
ty. Now, however, we find that including surface tension
apparently prevents an actual osculation, although the in-
terfaces can come very close. After some interesting
transients, the system ultimately relaxes to a Aat state.

For the jet dynamics on a finite interval, Eq. (14), an
implicit finite-diAerence scheme yields the dynamics
shown in Fig. 3(b), with the moving bottom boundary
evident. Once again, we find pinching at a finite time,
fitting well to a power-law vanishing of hm;„(P=2.0
+'0. 1) and divergence of h«„„(@=1.2~ 0.1). Note that
in each of the three cases the divergence observed is in

the velocity U of Eq. (4). This is stronger than necessi-
tated by the argument following Eq. (5), which yields
U ~ at the pinching time.

In light of the numerical evidence for singularities, we
return to the general result (11) to examine the relevance
of higher-order terms. For both the unstably stratified
layer and local jet dynamics we find that the 8(e )
corrections remain small relative to the dominant (h «)
term even when singularities develop. In addition, for the
first case, the behavior shown here is consistent with nu-
merical solutions of the full Hele-Shaw equations [5].
On the other hand, in the 8 ~ limit of the nonlocal jet
dynamics, it appears that higher-order terms are impor-
tant. While the precise eAect of these terms is as yet un-

clear, Eq. (2) will likely prove useful in interpreting the
limit of small surface tension, particularly for the outer
How far from the point of pinching.

A careful examination of Eqs. (1) and (2) reveals that
the velocities U which enter the continuity equation (4)
have the variational form
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For Eq. (I) these functionals are

dxf 2 Sh„+ & Rh ], C =0, (16)
while for Eq. (2) they are

Q
dx [ —,

' Sh„—Rhx], 8 =—„dxRh P [h 1 ~ 0.2"
(17)

The sign of C, for R &0, follows from the properties of
Hi]bert transforms in Fourier space, where C =(—aR/
2)Zk ~k ~ ~&(k) ~

. When a =0 and an external pressure is
applied, 2) has an additional term fdx Ph.

For each of these physical situations, the functional S
is the excess energy associated with the presence of the
intervening Auid layer, and its functional derivative with
respect to h is the pressure diA'erence acting on the inter-
face. The term (S/2)h„represents the excess surface en-

ergy over that of a Aat interface, arising from the small-
gradient expansion of the metric (I+h„) 'l . The terms
(R/2)h and Rhx in Eqs. (16) and (17) represent the
gravitational potential energy of the intermediate fluid

layer, associated with columns of Auid of height h or with
elements of fiuid of area hdx at height x.

If C =0, then 2) evolves as

S, = — dxhU~. (18)

Then, provided the half-width h is positive, S might act
as a Lyapunov functional. However, the energy function-
als X) here are not necessarily of definite sign (say, when

R & 0 for the density stratified layers). Still, the numeri-
cal studies suggest that in the outer Aow, away from the
point of nascent singularity, the interface shape is attract-
ed to functional extrema of 2), where U=O (see also
C93). In the case of Eq. (I ), this far-field behavior is as-
sociated with the rising spikes that pull Auid out of the
central region. Connections between asymptotic behavior
near a singularity and extrema of Lyapunov functionals
have been seen in the context of semilinear heat equations
[I I]. This link may prove important in the understanding
of the analytic structure of the singularities.

Finally, we remark that the PDE's (I), (2), and (14)
may be recast exactly into the scaling form

h(x, r) =I'f(x/r'), (19)
for particular choices of y and v. The resulting ordinary
diAerential equations are

(FF„,), —B(FF,), —F =0, (20)
for the Rayleigh-Taylor problem (IIr= —I, v=O),

(FF„,), + (B—z )F, +3F =0, (21)
for the local jet dynamics (@=3, v= 1), and likewise for
the nonlocal jet equation. While these similarity solu-
tions are exact transformations of the original PDE's, and
support singularities, they do not necessarily represent the
Aow obtained from arbitrary initial conditions. Rather, it
appears necessary to construct matched asymptotic ex-
pansions which link the large-scale Aow far from the
pinch point to that in the inner region near the singulari-

ty. This problem of energy cascade from large scales to
small, and possible associated logarithmic corrections to
power-law behaviors, are topics of current interest [12,
13]. Experiments [I] also suggest that inertial effects
near the topology transition may inAuence the detailed
shape of the colliding interfaces, and this is an additional
area for further work. In the absence of gravity, transi-
tions driven by applied pressure across a thin neck of fluid
do show shapes at the pinch point like those predicted by
the lubrication theory [6]. Experimental studies of topol-
ogy transitions resulting from the Rayleigh-Taylor insta-
bility considered here should also prove most illuminat-
ing.
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