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Helicity Production in the Transition to Chaotic Flow Simulated by Navier-Stokes Equation
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Helicity production in a homogeneous fluid is numerically demonstrated by using steady and unsteady
forced Navier-Stokes equations: Even if all Fourier components of the force do not have helicity, non-
linear interactions of the zero-helicity components can generate helicity in the flow. When the Reynolds
number increases, the flow nature changes from steady to temporally periodic to chaotic. The produced
helicity has the largest time-averaged value in the periodic motion.

PACS numbers: 05.45.+b, 47.27.Cn, 47.52.+j

Helical motions in a flow field are considered to play an
important role in the process of vortex reconnection and
the generation of turbulence structures [1]. The helicity,
defined as the space average of the inner product of veloc-
ity and vorticity, characterizes the helical motions. In
spite of its fundamental importance, investigations about
helicity have not been fruitful until recently, perhaps be-
cause a direct measurement of the instantaneous six com-
ponents of velocity and vorticity is exceedingly di%cult in

the experimental procedures. However, the recent advent
of the method of direct numerical simulation of Navier-
Stokes (NS) flow has provided a new avenue to study hel-
icity at low to moderate Reynolds numbers.

Helicity (as well as kinetic energy) is a conserved
quantity in the dynamics of the three-dimensional Euler
equation, and thus it is considered a fundamental quanti-
ty in the statistics of NS turbulence [2-7]. For example,
besides the usual Kolmogorov energy spectrum, the uni-
versal helicity spectrum is proposed as a result of the heli-
city cascade theory [5-7]. It is also conjectured that
alignment of velocity and vorticity induces spontaneous
breaking of parity invariance of the flow and leads to the
formation of highly energy-dissipating structures [4].
These conjectures are now under investigation.

In contrast to the energy, which is positive definite, hel-
icity does not have a definite sign. Owing to this proper-
ty, some interesting phenomena are observed in the gen-
eration of helicity. If a flow field is isotropic and parity
invariant, the helicity is zero. However, zero helicity does
not always imply the parity invariance. In other words,
the condition that helicity is zero is weaker than the con-
dition of parity invariance. For a clear understanding of
this point, let us consider a flow under some forcing.
Periodic boundary conditions and the initial condition of
no flow (u=0) are assumed. A parity-invariant force
creates a flow field with parity invariance, although an in-
stability breaking the invariance may appear at a rela-
tively large Reynolds number. On the other hand, a
zero-helicity force does not always generate a zero-
helicity flow. The generation of nonzero helicity flow by
a zero-helicity forcing has already been demonstrated for
the three-dimensional incompressible flow displaying the
anisotropic kinetic alpha instability: Flow stirred at small

scales by an anisotropic force lacking parity invariance
(but having no helicity) can generate strongly helical
structures at larger scales [8-10]. Actually the helicity
of the force used in Refs [8-.10] was zero for all Fourier
components, although it was not explicitly mentioned in
the references.

Since helicity production induced by a forcing all of
whose components have zero helicity is impossible in the
linear-diffusion-equation system, such production is
essentially a nonlinear effect. It therefore seems to be al-
most impossible to analytically estimate the helicity pro-
duced in the flow. So the present paper employs a nu-
merical approach: The production due to nonlinearity is
demonstrated by means of numerical perturbation
analysis of the steady NS equation and direct numerical
simulation of the unsteady NS equation. Although the
perturbation analysis is possible only for steady-state
equations and at low Reynolds numbers, we use it to
demonstrate analytically that nonlinearity causes the pro-
duction of helicity. On the other hand, the unsteady NS
equation can be handled numerically through the direct
simulation technique, and we employ it to investigate the
helicity production at relatively larger Reynolds numbers.
While the main interest of Refs. [8-10] is the inverse cas-
cade of helicity, the present paper discusses the helicity
production itself. In particular, the variation of the heli-
city along the transition to chaotic flow is investigated.

Let us first consider the helicity production in the ve-
locity field u governed by the linearized incompressible
NS (diffusion) equation:

I3u/Bt = veau+ f,
where v is the kinematic viscosity and f is a forcing. We
assume 2tt-space periodicity for u and f. Under other
boundary conditions such as nonslip condition, vorticity
or helicity may emerge from the boundaries. Helicity
production in the boundary layer is also an important
problem, but is not within the scope of our research.

In the Fourier space, Eq. (1) is written as

t)u(k)/clt = —vk u(k)+f(k) . (2)

Here a caret denotes the Fourier component and k is the
wave vector. The relationship between the helicities of
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u(k) and f(k) in the steady state is obtained as gument] for every k, then it is impossible to produce H,
Next consider the eA'ect of the nonlinear term of the

steady-state NS equation on helicity production. A per-
tion analysis of the equation enables us to under-
the eff'ect intuitively. The equation for the present

s written as

h[u(k)]=—ik xu(k). u( —k) =(vk ) h[f(k)]. (3)

vk 2u(k) = f(k)+ M[u(p), u(q);k], (4)

Here h[] denotes the helicity of each Fourier component
(helicity spectral density), and the total helicity is ex-
pressed by H„=(u Vxu) =Pgh[u(k)]. Equation (3)
means that if the helicity of f(k) is zero [for example, if
the three complex components of f(k) have the same ar-

where

(6)

M[u(p), u(q);k] = —(i/2) g [[k u(p)]u(q) —[k u(q) lu(p) —(2k/k ) [k u(p)] [k u(q)]] . (s)
p+q =k

The second (nonlinear) term on the right-hand side of Eq. (4) is supposed to be a perturbation term. Then the zeroth-
and the first-order solutions of (4), respectively, are

u (k) =(vk2) 'f(k),
u (k) =(vk ) 'f(k)+(v k ) 'M[@ f(p), q f(q);k].

Further the (n+ 1)th-order perturbed solution is obtained from the nth order by recursion:

u"+'(k) =(vk') 'jf(k)+M[u"(p), u"(q);kl].

(7)

A

If the amplitude of f(k) is small and/or v is large (Reynolds number is small), we expect that u"(k) converges to the
exact solution of Eq. (4) as n

If h [f(k)] =0, then the helicity of u (k) is zero, but that of u "(k) (n ~ 1) may not be zero. For example, we have

h[u'(k)l =i(v k ) '[kx f(k) Mf( —k)+kxMf(k) f( —k)]+i(v k") ' jk MXf(k)'Mf( k)] . (9)

Here

Mf(k) =M[p f(p), q f(q);k] (10)

is a second-order function of f, and thus Eq. (9) is the
third order. Even if h[f(k)] =0, the triad interaction of
f(k) may make h[u'(k)]&0. From a physical point of
view, it means that a zero-helicity flow is directly induced
by the zero-helicity forcing, and it is deformed by the
nonlinear eff'ect. The deformation, which remains under
the forcing, can produce helicity in the flow.

This perturbation procedure is numerically executed
for the confirmation of the helicity production. Equation
(8) along with (6) gives recursively higher-order per-
turbed solutions. We have used the wave number space
of —10 ~ k

~ k2, k3 ~ 10 for u(k), but the forcing is lim-
ited only to —2~ k~, k2, k3~ 2. The forcing is steady

I and h[f(k)] =0 for every k. Random numbers are used
for assigning the amplitudes and phases to f(k). The
characteristic length and time of f are estimated, re-
spectively, as L =((f )/((V&& f) ))'i =0.69 and T=(((V

&& f) )) 'i =2.5, and are used for the normalizations of
time, energy, enstrophy, and helicity. Also the Reynolds
number is defined as Re =L T '/v=0. 19/v.

Figure 1 shows the relationship between the perturba-
tion order n and the (total) helicity produced in the corre-
sponding perturbed field for different values of v (=0.1,
0.09, 'and 0.08, respectively, corresponding to Re=1.9,
2. 1, and 2.4). For all the values of v considered here, hel-
icity becomes negative for n=1, but then goes through
oscillatory transients, and finally converges to positive
asymptotic (steady) values for n ~ 10. Because of the os-
cillatory behavior of helicity for relatively small n, a low-
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FIG. l. Helicity production as a function of the order n of
perturbation analysis for v =0.1, 0.09, and 0.08.

FIG. 2. Time evolution of energy for v=0.05, 0.027, and
0,015.
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FIG. 3. Time evolution of enstrophy for v=0.05, 0.027, and
0.0l s.

FIG. 5. Time evolution of helicity for v =0.015.

Bu/Bt + (u V)u = —Vp+ veau+ f,
V u=O. (12)

The time-evolution equation of helicity H„ is obtained as

dH„/dt =2(m f) —2vH„.

Here H =(m V&& )mis helieity of vorticity (m=vxu),
which does not have a definite sign, just like H, Nega-
tive H„ increases H„, while positive H„decreases it. The

order perturbation may not be suScient for a proper es-
timation of the steady-state value of helicity. The con-
verged value increases with decreasing of v; the produced
helicity increases as the nonlinearity becomes stronger.
The case of v =0.08 takes much longer to converge and it
may be close to the convergence limit of the perturbation
series. [Here we should note that the limit depends also
on the amplitude of f(k). Under a sufficiently small am-
plitude, the series converges even if (vk ) ' & 1 for some
k.] It has been observed that for v=0.075 some oscilla-
tion appears even at n =1000, and it does not appear to
damp out completely. When v is further reduced to a
value of 0.07, calculations beyond about n =25 are im-
possible owing to numerical overAows. Values of v small-
er than that used in the perturbation analysis are investi-
gated later by directly simulating the unsteady NS equa-
tion.

Before presenting the simulation results, we consider
the dynamics of helicity by using the incompressible NS
equation:

correlation between the signs of H, , and H is therefore
an important factor in the evolution of helicity. We ob-
tain through a simple calculation

—(u ~u&=(u VxVxu&=(vxu Vxu)&0. (14)

This means that u and —h, u have more of a tendency to
be parallel than to be antiparallel. Thus (u Vxu) =H, ,

and —(hu Vxu) probably have the same sign. Noting
—(Au. Vxu) =(m V&&m) =H, we conjecture that H, ,

and H„have the same sign. If this conjecture is correct,
the term —2vH in Eq. (13) reduces the magnitude of
H, , regardless of its sign, and hence behaves like a viscous
dissipation for helicity. This will be confirmed in the fol-
lowing simulation result.

A direct simulation of the unsteady NS equation
demonstrates the helicity production at a Re larger than
that in the perturbation analysis. The simulation is done
by the spectral method in the same truncated Fourier
space and with the same forcing as in the perturbation
analysis. The time advancement from the initial condi-
tion of u =0 is by second-order Runge-Kutta scheme.
When v=O and f =0, H, , should be a conserved quantity
[see Eq. (13)l. The spectral method is quite suitable for
maintaining this property. For v=0. 1, 0.09, and 0.08,
the direct simulation gives the steady solutions in good
agreement with those obtained by the perturbation
analysis. Further we are also able to employ several
smaller values of v (0.01 & v&0.08).

It is possible to divide the values of v into the following
three ranges, in relation to the time evolutions of energy
and enstrophy: 0.03 & v & 0.08 (6.3 & Re & 2.4)—steady
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FIG. 4. Time evolution of helicity H„=(u Vxu) for v=0.05
and 0.027.

FIG. 6. Time evolution of helicity of vorticity H„=(m V& ca)

for v=0.05 and 0.027.
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FIG. 7. Time evolution of helicity of vorticity for v =0.015.

motion, 0.022 & v (0.027 (8.6 & Re & 7.0)—periodic
motion, and 0.01 ( v (0.02 (19 & Re & 9.5)—chaotic
evolution. Representative evolutions of energy and en-
strophy are shown, respectively, in Figs. 2 and 3, which
indicate steady, periodic, and chaotic evolutions. Even
for the largest Re Aow, the inner wave number space
—5 ~ k~, k2, k3 ~ 5 contains more than 99% of the total
energy in the full space —10~ k~, k2, k3~ 10. We can
therefore say that the number of Fourier modes is su%-
cient to simulate these Aows.

Figures 4-7 show the evolutions of H, , and H . These
figures also exhibit steady, periodic, and chaotic motions,
respectively, for v=0.05, 0.027, and 0.015. As conjec-
tured before, the signs of H, , and H„ in the steady and
periodic motions are the same except for the initial tran-
sition phase. In the chaotic motion, H, , and H vary ir-
regularly with time, but the signs of H„and H„are the
same for about 85% of the period 0 & t & 2000. The pre-
vious conjecture about the signs of H, , and H seems to
be acceptable also in this chaotic motion.

Energy, enstrophy, and helicity against Re are shown
in Fig. 8, in which for periodic (the range "P") and
chaotic (the range "C")motions, values obtained by time
average over 400& t &2000 are used. Energy and en-
strophy display a rather slow monotonic increase with Re
in the entire range. On the other hand, helicity increases
very rapidly in the range "5," reaches a maximum some-
where inside "P," and starts displaying an oscillatory be-
havior in the range "C." In the transition from periodic
to chaotic, the nonlinearity becomes stronger (because Re
increases), but it produces only less helicity.

In summary, helicity can be produced by a forcing
whose helicity spectral density is zero, due to the non-

Re
F1G. 8. Energy (o), enstrophy (A), and helicity (p) as a

function of Reynolds number. "S"means the range of steady
motion, "P" is for the periodic, and "C" is for the chaotic.

linear eAect of the NS equation. Such a helicity produc-
tion has been demonstrated numerically by the perturba-
tion analysis and the direct simulation of the NS equa-
tion. In the steady and the periodic motions, the helicity
increases with Re. However, when the motion becomes
chaotic, the time-averaged value of the helicity goes
down. There seems to be a strong relationship between
the production-reduction of helicity and the transition to
chaos, indicating that helicity dynamics may play a key
role in the onset of unstable Aow.
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