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Communicating with Chaos
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The use of chaos to transmit information is described. Chaotic dynamical systems, such as electrical
oscillators with very simple structures, naturally produce complex wave forms. We show that the sym-
bolic dynamics of a chaotic oscillator can be made to follow a desired symbol sequence by using small
perturbations, thus allowing us to encode a message in the wave form. We illustrate this using a simple
numerical electrical oscillator model.

PACS numbers: 05.45.+b

Much of the fundamental understanding of chaotic dy-
namics involves concepts from information theory, a field
developed primarily in the context of practical communi-
cation. Concepts from information theory used in chaos
include metric entropy, topological entropy, Markov par-
titions, and symbolic dynamics [1]. On the other hand,
because of their exponential sensitivity, chaotic systems
are often said to evolve randomly. This terminology is
partially justified if one regards the information obtained
by detailed observation of the chaotic orbit as being less
significant than the statistical properties of the orbits.
The object of this Letter is to show that we can use the
close connection between the theory of chaotic systems
and information theory in a way that is more than purely
formal. In particular, we show that the recent realization
that chaos can be controlled with small perturbations [2]
can be utilized to cause the symbolic dynamics of a
chaotic system to track a prescribed symbol sequence,
thus allowing us to encode any desired message in the sig-
nal from a chaotic oscillator. The natural complexity of
chaos thus provides a vehicle for information transmission
in the usual sense. Furthermore, we argue that this
method of communication will often have technological
advantages.

Specifically, assume that there is an electrical oscillator
producing a large amplitude chaotic signal that one
wishes to use for communication. The so-called double
scroll electrical oscillator [3] yields a chaotic signal con-
sisting of a seemingly random sequence of positive and
negative peaks. If we associate a positive peak with a 1,
and a negative peak with a 0, the signal yields a binary
sequence. Furthermore, we can use small control pertur-
bations to cause the signal to follow an orbit whose binary
sequence represents the information we wish to communi-
cate. Hence the chaotic power stage that generates the
wave form for transmission can remain simple and
el%cient (complex chaotic behavior occurs in simple sys-
tems), while all the complex electronics controlling the
output remains at the low-power microelectronic level.

The basic strategy is as follows. First, examine the
free-running (i.e. , uncontrolled) oscillator and extract
from it a symbolic dynamics that allows one to assign

symbol sequences to the orbits on the attractor. Typical-
ly, some symbol sequences are never produced by the
free-running oscillator. The rules specifying allowed and
disallowed sequences are called the grammar Metho. ds
for determining the grammar (or an approximation to it)
of specific systems have been considered in several
theoretical [4] and experimental [5] works. (In the en-
gineering literature, a similar concept exists in the con-
text of constrained communication channels. ) The next
step is to choose a code whereby any message that can be
emitted by the information source can be encoded using
symbol sequences that satisfy suitable constraints im-

posed by the dynamics in the presence of the control.
(The construction of codes with such constraints is a
standard problem in information theory [6], and will be
discussed in the context of communicating with chaos,
along with the required generalizations, in a longer paper
[7].) The code cannot deviate much from the grammar of
the free-running oscillator because we envision using only
tiny controls that cannot grossly alter the basic topologi-
cal structure of the orbits on the attractor. Once the code
is selected, the next problem is to specify a control
method whereby the orbit can be made to follow the sym-
bol sequence of the information to be transmitted. Final-
ly, the transmitted signal must be detected and decoded.

We now present a simple numerical example illustrat-
ing how the preceding strategy is carried out. Figure
1(a) is a schematic diagram of the electrical circuit pro-
ducing the so-called double scroll chaotic attractor [3].
The nonlinearity comes from a nonlinear negative resis-
tance represented by the voltage vR in Fig. l. (Different
realizations of the negative resistance are possible; we
have constructed one using an operational amplifier cir-
cuit, and are designing an experiment using this oscillator
to demonstrate information transmission using chaos. )
The diAerential equations describing the double scroll
system are

C, tc, =G(vc, —vc, ) —g(vc, ),
C2vc2 = 6(vc, vcr) + lt
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FIG. 2. Double scroll oscillator state-space trajectory pro-
jected on the iL-vp, plane showing the two branches of the sur-
face of section.

FIG. 1. Double scroll oscillator: (a) electrical schematic and
(b) nonlinear negative-resistance i vcha-racteristic g.

The negative-resistance i-v characteristic g is shown in

Fig. 1(b). For our example, we use the normalized pa-
rameter values used by Matsumoto [3]: Cl = —,', C2 =1,
L = &, G =0.7, mo= —0.5, m~ = —0.8, and Bz =1. For
a Poincare surface of section (see Fig. 2), we take the
surfaces it, =+ GF, Ivc, I

(F, where F=8~(mo —ml)/
(G+mo), so that these half planes intersect the attractor
with edges at the unstable fixed points at the center of the
attractor lobes. Figure 2 shows a trajectory of the double
scroll system with the two branches of the surface of sec-
tion labeled 0 and 1. (The plane surfaces are edge-on in
the picture. ) The intersection of the strange attractor
with the surface of section is approximately a single
straight line segment on each of the two branches. Let x
denote the distance along this straight line segment from
the fixed point at the center of the respective lobe,
x =(F It'c, l)cos8+ It'c, I sin8, where 9 is the angle that
the line segment makes with the iL-»g, plane. Because
absolute values are used in defining x, we can use the
same x coordinate for both lobes of the attractor.

To construct a description of the symbolic dynamics of
the system, we run the computer simulation without con-
trol. When the free-running system state point passes
through the surface of section, we record the value of the
generalized coordinate x (restricted to 1000 discrete bins
for the computer simulation), and then record the symbol
sequence that is generated by the system after the state
point crosses through the surface. Suppose the system
generates the binary symbol sequence bib2b3. . . . We
represent this by the real number O.bib2b3. . . , so that
each symbol sequence corresponds to the real number
r =P„-lb„2 ", and symbols that occur at earlier times
are given greater weight. We refer to the number r,

1.0
i

0.5-
I 'lJ1F I

0.0
0.1 0.3

fL J4I

0.5
AIL JR

0.7

FIG. 3. Binary coding function r(x) for the double scroll
system.

specifying the future symbol sequence, as the symbolic
state of the system. This defines a function mapping the
state-space coordinate x on the surface of section to the
symbolic coordinate r. This function r(x) (which we call
the coding function) is shown in Fig. 3. (The function
gives actual symbol sequences when referring to the 0
lobe, and the bitwise complement when referring to the 1

lobe. ) Because the oscillator is only approximately de-
scribed by a binary sequence, multiple values of x lead to
the same future symbol sequence. (We only need to
track one of them. More sophisticated techniques both
for symbol assignment and symbol sequence ordering are
discussed in the longer paper [7].) Because the intersec-
tion of the attractor with the surface of section is only ap-
proximately one dimensional, there is a slight uncertainty
in the symbolic state for some values of x; this uncertain-
ty is indicated by the shading in the regions between the
upper and lower bounds on the value of r in Fig. 3. Ob-
servations of the time wave form produced by the oscilla-
tor suggest that the grammar is simple: Any sequence of
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binary symbols is allowed, except there can never be less
than two oscillations of the same polarity. (We do not
discuss the full grammar here, but instead adopt this sim-
ple grammar for simplicity of description. ) This no-
single-oscillation rule leads to a very simple coding: In-
sert an extra 1 after every block of 1's in the binary
stream to be transmitted, and an extra 0 after every block
of 0's. This altered data stream now satisfies the con-
straints of the grammar, and is uniquely decodable: Sim-
ply remove a 1 from every block of 1's upon reception,
and a 0 from every block of 0's. Thus k oscillations of a
given polarity represent k —

1 information bits.
We now discuss how we control the system to folio~ a

desired binary symbol sequence. Say the system state
point passes through branch 0 of the surface of section
(shown in Fig. 2) at x =x„and next crosses the surface
of section (on either branch 0 or I) at x =xb. Because
we have previously determined the function r(x), we can
use the stored values to find the symbolic state r(x, ).
We then convert the number r(x, ) to its corresponding
binary sequence truncated at some chosen length N, and
store this finite-length symbol sequence in a code register.
As the system state point travels towards its next en-
counter with the surface of section at x =xb, we shift the
sequence in the code register left, discarding the most
significant bit (the leftmost bit), and insert the first
desired information code bit in the now empty least
significant slot (the rightmost slot) of the code register.
We then convert this new symbol sequence to its corre-
sponding symbolic state rb. Now, when the system state
point crosses the surface of section at x =xb, we use a
simple search algorithm to find the nearest value of the
coordinate x that corresponds to the desired symbolic
state rb, call this xb. By construction, !~r(xb) —r(xb)!
~ 2 . [If r(x) is continuous, as in the Lorenz system,
for example, this search can be replaced by a more
eScient local derivative projection to find the desired
value of x.l Now let 8x =xb —xb. Because we have
chosen the branches of the surface of section at constant
values of the inductor current iL, the deviation Bx in the
generalized coordinate corresponds to a deviation in the
voltages vg, and vg, across the two capacitors in Fig. 1.
We thus apply a vector correction parallel to the surface
of section (at constant iL) along the attractor cross sec-
tion to put the orbit at x =xb. This small correcting volt-
age perturbation is given by 8vc, = ~ bx cos(8),
= + Sx sin(e), where the + signs are used for lobe I of
the attractor, and the —signs for lobe 0. We plan to do
this experimentally with current pulse generators con-
nected in parallel with each capacitor. (Many methods
of applying control perturbations are possible, but this
one is particularly straightforward. ) On each successive
pass through the surface of section, a new code bit is
shifted into the code register, and we repeat the pro-
cedure to correct the state-space coordinates, and thus
the symbolic state, of the system. The coded information
sequence, because it is shifted through the code register,

3.0
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FIG. 4. Controlled vG(t) signal for the double scroll system
encoded with "chaos." Each letter is shown at the top of the
figure, along with its numerical position in the alphabet. Shown
at the bottom are the corresponding binary code words. Extra
bits (indicated by commas) are added to satisfy the constraints
imposed by the grammar.
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does not begin to appear in the output wave form until /V

iterations of the procedure, where N is the length of the
code register. If the symbol sequence is coming from a
properly coded discrete ergodic information source, the
process of shifting the information sequence through the
code register can be viewed as locking the symbolic dy-
namics of the oscillator to the information source. Thus,
there is a short transient phase during which the symbolic
dynamics of the oscillator is being locked to the informa-
tion source, and the symbolic dynamics of the oscillator is

always N bits behind the information source.
Figure 4 shows an encoded wave form for the double

scroll system produced by the described technique. This
wave form corresponds to the voltage wave form vo(t)
across the passive conductance G. If the conductance 6
is replaced by a transmission channel of the same im-

pedance, the signal produced can be transmitted through
the channel. We have represented each letter of the Ro-
man alphabet by the five-bit binary number for its loca-
tion in the alphabet, and added the extra bits to satisfy
the no-single-oscillation constraint to encode the word
"chaos." We have applied the technique to first bring the
system to a periodic orbit about lobe 1 of the attractor,
then to execute the writing of the word, and then to bring
the system back to a periodic orbit about lobe 0. The tra-
jectory shown in Fig. 2 is actually the encoded trajectory,
but this is not apparent in the figure because the con-
trolled trajectory approximates a possible natural trajec-
tory. The root-mean-squared amplitude of the control
signal over the writing of the word was of order 10 in

the normalized units. The control probably cannot be
made much smaller using this simple technique, primarily
because the one-dimensional approximation in the surface
of section causes the coding function to be slightly inac-
curate. This control amplitude, though already very
small compared to the oscillator signal voltages, does not



VOLUME 70, NUMBER 20 PHYSICAL REVIEW LETTERS 17 MA+ 1993

appear to be a fundamental limit, and we are developing
control techniques to reduce it.

%'e conclude with some comments concerning the
scope, application, and theoretical significance of our
technique.

(1) Since we envision the transmitted signal to be a
single scalar, its instantaneous value does not specify the
full system state of the chaotic oscillator. If more state
information is needed to extract the symbol sequence,
time delay embedding [8] can be used. As our example
using the double scroll equations shows, however, time
delay embedding is not always necessary.

(2) Because our control technique uses only small per-
turbations [9], the dynamical motion of the system is ap-
proximately described by the equations for the uncon-
trolled system. Knowing the equations of motion greatly
simplifies the task of removing noise [10] from a received
signal. The basic bipolar nature of the signal in Fig. 4
implies that the message can still be extracted for noise
amplitudes that are significant, but not too large com-
pared to the signal. %'e consider the eAects of additive
noise on the detection of chaos signals quantitatively in
the longer paper [7].

(3) Signals that are generated by chaotic dynamical
systems and carry information in their symbolic dynamics
have an interesting and possibly useful property: More
than one encoded symbol can be extracted from a single
sample of the trajectory if time delay embedding is used.
This is done by using the state-space partition for a
higher order iterate of the return map [7] of the system.

(4) Much of the theory needed to understand informa-
tion transmission using the symbolic dynamics of chaotic
systems already exists [11]. For example, because the to-
pological entropy [12] of a dynamical system is the
asymptotic growth exponent of the number of finite sym-
bol sequences that the system can generate (given the
best state-space partition), the channel capacity of a
chaotic system used for information transmission is given
by the topological entropy. The types of channel con-
straints that arise with a chaotic system will be discussed
in a longer paper [7], along with other theoretical con-
siderations.

(5) We emphasize that the particular methods for con-
trol and coding used in our double scroll example were
chosen for simplicity, and that other more optimal
methods are possible. Also, the double scroll oscillator it-
self was chosen because it is simple, and a large body of
research is available about its dynamics. It is not intend-
ed as an example of a practical oscillator for communica-
tion wave form synthesis. It may be possible to use a
higher-dimensional radio-frequency band-limited chaotic
system for improved performance (higher information
rate and better noise immunity), roughly analogous to the
use of complex signaling constellations in classical com-
munication systems. %'e are now developing more practi-
cal high-speed symbolic control techniques that could be
used at higher bit rates than an implementation of the
3034

straightforward example given here.
(6) There has been much discussion of the role of

chaos in biological systems, and we speculate that the
control of chaos with tiny perturbations may be impor-
tant for information transmission in nature.
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