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Dynamical Chaos of Plasma Ions in Electrostatic Waves
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Chaos generated by the interaction between charged particles and electrostatic plasma waves has been
observed in a linear magnetized plasma. The macroscopic wave properties, the kinetic ion dielectric
response, and the microscopic heating mechanisms have been investigated via optical diagnostic tech-
niques based on laser-induced fluorescence. Observations of test-particle dynamical evolution indicate
an exponential separation of initially close ion trajectories.

PACS numbers: 52.50.Gj, 52.20.Dq, 52.35.Fp

Wave-induced dynamical chaos in plasmas is studied
extensively because of its general interest as a paradigm
of nonlinear dynamics and its possible direct applications
in space and laboratory plasmas, such as anomalous
transport, nonlinear heating, and particle acceleration
[1].

Hamiltonian single-particle models are able to predict
transitions to chaos in terms of wave amplitudes and
spectra, based on the Chirikov overlap criterion and its
recent refinements [2]. The validity of these results needs
to be verified for the different scenarios, since all kinds of
collective reponse, such as self-consistent effects (feed-
back action of chaotic particles on the waves) or non-
linear wave-wave interactions, necessarily neglected in
the models, can play a crucial role.

It has been predicted theoretically and demonstrated
experimentally that in a magnetized plasma a wave prop-
agating obliquely with respect to the magnetic field can
generate fast ion heating through chaos in particle orbits
[3-51.

The case of two (or more) waves propagating at dif-
ferent phase velocities is predicted to be suitable for at-
taining global chaos [6,7]. In this case, the large number
of resonances present in particle phase space lowers the
threshold amplitude for the occurrence of chaos, increas-
ing the efficiency of the stochastic heating mechanism.
Relatively low amplitude fields, associated with linear
plasma modes, could then cause very strong nonadiabatic
particle responses.

In the experiment reported in this Letter we investigate
the interaction between ions and electrostatic waves in a
Q-machine plasma. In particular, our aim is to study the
transition to chaos via integrated observations of the col-
lective ion response (wave characteristics), of ion kinetic
features (modification of distribution functions, time
scale for heating), and of test particle orbits (phase-space
transport).

The experiments are performed on the LMP (Linear
Magnetized Plasma) barium Q machine [8] (Fig. 1), a
uniformly magnetized plasma column characterized by
ion and electron temperatures of the order of 0.2 eV and
a low degree of spatial and temporal inhomogeneities
(e.g., 6n/n < 1%, 6Bo/Bo <0.3%). Plasma density is in
the 108-10'%cm 3 range. The maximum axial By field
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is 0.3 T (f,;=30 kHz). Sheath acceleration at the hot
plate causes a supersonic ion drift vp = 10> cm/s. Cou-
lomb collision mean free paths are of the order of the
machine length.

Electrostatic ion waves (f= f,;) are launched by
a capacitive antenna consisting of four rings surround-
ing the plasma column at variable relative distances
and phases. The optimum coupling, corresponding to a
matching between the antenna spectrum and the plasma
dispersion relation, is obtained for an interring distance of
1 cm (the width of the rings is 1 cm) and relative phases
[z, —n, — m,n]. The entire system is floating with respect
to the plasma. To reduce direct electron losses in the
near field region, the antenna rings have been covered by
an insulating material.

The diagnostic system is based on the technique of
laser-induced fluorescence [LIF] [9], which provides a
direct measurement of the ion velocity distributions. The
spatial and temporal resolutions (<5 mm? and < 50 ns,
respectively) allow local observations of the ion response
at different points of the space-time wave pattern. In
particular, by using phase-synchronous detection, ion
density oscillations and perturbed distribution functions
[derived from f'(v) or from selected components of
f*()] can be directly recorded. From a Vlasov model,
the properties of the waves propagating in the plasma can
then be deduced [10].

A single frequency is placed on the four-ring antenna
in the laboratory frame. According to the direction of
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FIG. 1. The LMP experimental setup. The laser beams
“perp 17 and “perp 2” are used to tag and detect test particles,
respectively.
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propagation in the plasma frame along the magnetic field,
the wave frequency is Doppler shifted either up or down.
Waves with two parallel phase velocities are observed,
corresponding to the two propagation directions in the
plasma frame. In addition, the upward Doppler shifted
frequency has associated with it two perpendicular wave-
lengths corresponding to the two roots of the electrostatic
ion cyclotron wave (EICW) dispersion relation [11,12].
At the frequency chosen for the experiment (f=25 kHz
== 1.15f,;) the difference between the two parallel phase
velocities is Avy=|vyy —ve1| = 5% 10* cm/s.

The Hamiltonian of a single magnetized particle in the
field of these electrostatic modes can be written in the
form

H=p}/2m+p,a+eV coslkyz—wt+n)
+eVycoslkyz—wt+k o ir+n,)
+eVicoslkpz—wt +n3+kior). 1)

Here p, and z stand for momentum and position along
the magnetic field, r and ¢ for radial and angular cylin-
drical coordinates, and p, for the momentum conjugated
to ¢. Q indicates the ion cyclotron angular frequency.
V,V2, V3 are the potentials associated with the acoustic
wave and the two components of the EIC wave. 7;
(i=1,2,3,) are the initial phases. Clearly, for V;=0
(i=1,2,3), no transformation exists which would render
H time independent: The energy is not a constant of the
motion.

It is well known that for amplitudes v exceeding a
certain threshold value, a transition in the topology of
particle orbits takes place: Ions are no longer trapped in
the wave potential wells and wander chaotically in phase
space.

In the case of one obliquely propagating wave the oc-
currence of chaos is linked to the nonlinear interaction of
multiple Doppler shifted cyclotron resonances w,=w
—kwp+nQ,; (n=0,%1,%2,...). Here the situation
is somewhat more complicated: In the parallel plane
there are two primary resonances, at vy and vy, and the
series of harmonics associated with each one. For our ex-
perimental parameters, though, Av, is such that on the
parallel ion phase space one can consider only these pri-
mary resonances, neglecting, to a first approximation, the
multiple island structure introduced by the nonzero per-
pendicular wave numbers. In expression (1), this implies
k_“ =kJ_2=0 and V3=0.

When the wave amplitude is such that the separatrices
corresponding to the two primary resonances touch, a
chaotic regime should be reached. As in Ref. [2] we in-
troduce the stochasticity parameter K =2(4{?+.A43/?),
where A; =eV;/m(Av,)? is the normalized amplitude of
the mode i (i=1,2). K=1 represents the threshold for
the transition. For K > 1 significant particle transport
and acceleration should be triggered; macroscopically,
fast ion heating should be achieved.

In Fig. 2 we plot the steady-state parallel and perpen-
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FIG. 2. Parallel (top) and perpendicular (bottom) ion tem-
peratures vs wave excitation amplitude. f=25 kHz. These
measurements, as well as those reported in the following graphs,
have been taken a few cm downstream with respect to the an-
tenna.

dicular ion temperatures as functions of the excitation
amplitude. A threshold value exists, above which a sig-
nificant heating occurs. A calibration of the wave ampli-
tude based on the ion dielectric response [10] allows us to
compare the observed threshold to the theoretical predic-
tion for the experimental wave parameters. K=1 corre-
sponds to the shaded area on the amplitude axis of the
graph. We see that there is good agreement concerning
the threshold for chaos, the main uncertainty being intro-
duced by the measurement of the wave amplitudes. The
same heating is observed in high-time-resolution mea-
surements which are synchronized with the wave frequen-
cy so as to eliminate broadening of the observed distribu-
tion due to the reversible motion. No significant varia-
tions in the wave frequency spectrum are noticed when
the excitation amplitude is increased above threshold.

By gating the wave launching generator and observing
the time-resolved ion distribution from the excitation
start time, =0, an accurate estimate of the heating time
is possible. More specifically, by plotting the increase in
the mean square velocity as a function of time, an esti-
mate of the velocity-space diffusion coefficient averaged
over all velocity classes can be obtained if the dependence
is linear. This is shown in Fig. 3 for a wave amplitude
just above threshold. The resulting velocity-space diffu-
sion coefficient is more than 1 order of magnitude larger
than the collisional coefficient [13]. The mechanism re-
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FIG. 3. Evaluation of the average parallel-velocity-space
diffusion coefficient. (v2)y is the second-order moment of the
parallel distribution function: (v ={v?(z=0). From the
slope of the linear fit D, ,, =1.1%10'> cm?/s3; the collisional
diffusion coefficient for the same experimental parameters (n
== 10° cm ~*) would be [13] D& = 10'2 cm?/s>.

sponsible for the heating, therefore, is observationally dis-
tinct from collisional processes and is consistent with the
operation of dynamical chaos.

A definite proof of this interpretation, and a rough esti-
mate of the degree of chaos, can be achieved from an
analysis of test-particle phase-space transport. An exten-
sion of LIF, optical tagging [14], has been used for this
purpose. Spin polarization of ground-state ions, coupled
with a particular scheme of LIF, allows the creation and
detection of test particles [15]. The dynamical evolution
of sets of tagged ions reveals information about the na-
ture of ion orbits. In the case of a perpendicular tag
beam injection geometry, the comparison of the tag signal
radial profiles recorded at different locations in the plas-
ma allows an estimate of ion transport mechanisms and
parameters [16,17]. As shown in Ref. [17], the radial ion
transport in the LMP unperturbed plasma is produced by
purely classical mechanisms. By increasing progressively
the wave amplitude from zero to values above the thresh-
old for chaos, variations in diffusivity can be sought. No
significant change is observed in the linear regime, but in
the range corresponding to the threshold for heating an
abrupt transition in the test-particle transport charac-
teristics appears. The square of the width of the tagged
particle profile no longer evolves linearly in time as in the
case of diffusion (i.e., of a classical random walk), but it
grows exponentially [Fig. 4(a)l. The z axis can be
transformed into a time axis from the relation t=z/vp.
Likewise, the integral of the tag profile along the radial
coordinate x7, constant over the short distance spanned
by the detection system in the low amplitude regime, de-
cays exponentially [Fig. 4(b)]. It is important to observe
that the two exponential rates are of the same order of
magnitude (~1 cm '),

To operate a tag measurement corresponds to fixing an
initial small volume in a subset of the particle phase
space (in this case initial position and velocity in the per-
pendicular plane), and looking for it after a certain time.
Here different final positions are explored, but only one
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FIG. 4. (a) Square of the width of the tag signal radial
profile, obtained by a radial scan of the tag injection point, vs
the axial position. Note that, because of the uniform plasma
parallel drift, the horizontal axis corresponds uniquely to the
time axis in the plasma frame. (b) Total number of tagged par-
ticles (line integral of the tag signal radial profile) vs position.
The best fit by an exponential curve, shown on the graphs, gives
a1=08cm~ ! as=1.3cm™ "

perpendicular velocity is considered. Exponential broad-
ening in space, in conjunction with the exponential decay
of the line-integrated signal, is a signature of divergence
of small volumes in phase space. Chaos, that is, local in-
stability of orbits with respect to initial conditions, is
therefore clearly indicated. The rate of divergence is also
observed to increase as the wave amplitude is increased,
as expected.

A qualitative comparison with an existing model can
then be attempted. Small regions of phase space are pre-
dicted to evolve according to [18]

AT = ATgexp(ht) , 2)

where AT is the volume occupied (in a coarse-grain
sense) at time ¢ by particles which were in AI'p at time
t=0. h is the so-called Kolmogorov-Sinai entropy, de-
fined as the ensemble average of the sum of positive
Lyapunov exponents:

h =< > 7»,-> (A; are Lyapunov exponents) . 3)
A >0

In the stochastic layer 4 is constant and is characterized
by the same order of magnitude as the inverse of the
correlation decay time 7.: h= .. In the case of the
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FIG. 5. Variations of the measured velocity-space diffusion
coefficient with the excitation amplitude. A critical value for
the amplitude, V.=18 a.u., at which saturation begins, can be
defined.

two-wave-induced chaos an analytic estimate for 7. is
possible [18]:

7. = [v,Ak1nK] - 4)

For the parameters corresponding to the measurements
reported in Fig. 4, expression (4) gives a correlation de-
cay length of about 1 cm.

This value agrees with the observed divergence rate of
test ion phase-space volume. Thus, even though more
specific tagging measurements, allowing a reconstruction
of the ion orbits [19], are necessary to evaluate directly
the Lyapunov exponents, a first indication about the de-
gree of stochasticity of the wave-driven chaotic system
has been obtained.

At frequencies for which only one wave component
along the magnetic field exists, no heating is observed, up
to amplitudes where secular perturbations of the antenna
and intrinsic nonlinearities become effective. In fact, the
threshold for one obliquely propagating wave is expected
to be higher than for waves with two parallel components.
On the other hand, in the case of one purely parallel
mode, the wave-particle dynamical system is integrable.
The case of two waves is then experimentally shown to be
more favorable in the achievement of chaos and stochas-
tic heating.

By further increasing the amplitude of the waves well
above threshold a different interaction regime can be ex-
plored and the question of the saturation of the particle
energization mechanisms can be addressed. In Fig. 5 we
see the dependence of the velocity-space diffusion coeffi-
cient upon the excitation amplitude, as deduced from the
initial slope of the temperature versus time curve, in a
gated measurement scheme. The data confirm the qua-
dratice dependence for “moderate” amplitudes (< V,)
above threshold expected from quasilinear arguments
[20], but at higher amplitudes a saturation takes place.

Preliminary results on wave propagation at amplitudes
close to the threshold for chaos seem to indicate the pres-
ence of self-consistent effects, which tend to modify the
wave spectrum. In fact, since ion orbits undergo a transi-
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tion from regular to chaotic, the plasma wave fields, de-
rived from the integration of charged-particle trajec-
tories, are necessarily altered. These effects can be par-
tially responsible for the observed saturation.

In summary, chaos in ion dynamics originated by the
interaction between particles and electrostatic propaga-
ting plasma waves has been observed in a magnetized
plasma. Optical measurements at different scales, from
the single-particle to the macroscopic level, allowed a
determination of the wave features, the kinetic ion
response, and the plasma heating mechanism. Local
transport analysis of test particles has indicated an ex-
ponential separation of initially close ion trajectories. A
saturation of stochastic heating has been observed well
above threshold; chaos appears to be self-limited.
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