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Minimum energy structures for large carbon cages are investigated using realistic atomic potentials.
Above a critical size of ~6000 there is a stability crossover from single to multilayer cages. The lowest
energy atomic configuration of a cage of any size consists only of hexagons and pentagons and is po-
lyhedral in shape. Lowest energy defects involve either rearrangements between pentagons and hexa-
gons or 5-7-5 triplets. Simulated transmission electron microscopy images show that a polyhedral onion
appears spheroidal when viewed along its highest symmetry axis, and polyhedral when viewed from a

more general direction.

PACS numbers: 36.40.+d

Recent experimental breakthroughs in the production
of macroscopic quantities of Cgp in a graphite arc and the
direct confirmation of the molecule’s spheroidal nature
[1] have added a new family of stable forms of solid car-
bon. Graphitic sheets, the lowest energy form in the
bulk, are energetically less favorable in finite-sized sam-
ples. This is because the presence of dangling bonds re-
sults in a tendency for the hexagonal sheets to patch up
loose ends by curling up [2-4]. Experimental isolation of
large carbon cages [5-7] and the unexpected discovery of
concentric carbon nanotubes [8-10] have stimulated de-
tailed theoretical studies [11,12] of energetics, electronic
structure, and nucleation mechanisms of different kinds
of fullerenes. Very recently yet another structure of car-
bon has been discovered in soot annealed by intense
electron-beam radiation [13]. These new fullerenes,
called ‘‘onions,” consist of nearly spherical, concentric
shells, and are extremely stable under further irradiation
[13,14]. The existence and stability of carbon onions
have added to the excitement of unraveling the lowest en-
ergy allotrope of carbon in systems of limited size.

This Letter presents scaling arguments and explicit en-
ergetic considerations for the existence of a critical size of
carbon clusters below which single cages are favored en-
ergetically and above which multilayer cages, or onions,
are stable. The critical size marking this stability change
is estimated from total energy calculations. Among the
single-layer cages, the ones with icosahedral symmetry
are found to be energetically the most stable. We also
find that the ground state corresponding to the most
stable cage consisting of an even number of atoms always
involves only hexagons and exactly twelve pentagons.
(Odd-atom cages cannot form a fully threefold-coor-
dinated network.) The lowest energy cages are thus al-
ways polyhedral. Low energy topological defects in large
cages (V> 200) are possible, but the polyhedral shape of
the cage still remains. Simulated transmission electron
microscopy (TEM) pictures show that polyhedral cages
can appear spheroidal when viewed from a particular
high symmetry direction, and polyhedral when viewed
from a more general direction.

The method of calculation is based on a conjugate gra-
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dient minimization of a three-valent atomic network.
The interatomic forces are calculated from a three-body
Tersoff potential [15] as modified by Brenner [16]
(henceforth referred to as the Tersoff-Brenner potential).
Simulated annealing performed directly on an initially
random atomic cage almost always gives rise to fullerenes
with defects [17,18], due to strong directional bonding
that results in high barriers for bond rearrangements
[19]. A simulated annealing search of sufficient duration
to find the true ground state or the low energy metastable
states is too demanding computationally at this time. A
feasible shortcut is to minimize first the network of face
centers, the so-called face-dual network, interacting
through a pairwise repulsive potential and constrained to
move on a closed surface [20]. For concreteness, a pair-
wise 1/r? potential is used in all calculations reported
here, and the constraining surface is chosen to be spheri-
cal. The resulting face-dual network is a spherical tessel-
lation of triangles, with five or more sides meeting at each
vertex. Following Coxeter [21,22], we denote such a net-
work by the symbol {3,5+}. Dualizing this face-dual
network yields a tessellation {5+,3} of an atomic net-
work: a three-valent cage structure with five or more sid-
ed faces, which forms a suitable initial configuration to be
relaxed with the Tersoff-Brenner potential. This pro-
cedure provides an efficient method for generating low
energy structures of cages with any even number of
atoms. For an “onion,” the starting configuration is ob-
tained by generating each concentric onion shell separate-
ly by the face-dual minimization procedure described
above. A conjugate gradient relaxation is then performed
using the Tersoff-Brenner potential within each shell, and
a van der Waals (vdW) potential between pairs of con-
secutive shells. The vdW potential has been taken direct-
ly from previous studies of bulk graphite [23]. The re-
sults were also checked with another parametrization of
the vdW interaction [24].

The results for the ground state total energy per atom
for single cages are shown in Fig. 1, as a function of cage
size. A convex hull is constructed through the energies of
the most stable cages [25]. The cages whose energies are
on the hull turn out to be the ones with icosahedral sym-
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FIG. 1. The ground state energy E(N) (per atom) of single
cages as a function of cage size V. The zero is chosen at
E graphene = —7.3768 eV/atom. The convex hull (bold line)
passes through the icosahedral cages (black squares). Some
stable cages of lower symmetry (crosses) are also shown.

metry and correspond to sizes given by the formula [26]
N=20(b%+bc+c?), (1

where b and ¢ are non-negative integers. The lowest few
numbers in this series are 20, 60, 80, 140, 180, 240, and
so on. However, many clusters of lower symmetry, al-
though not exactly on the hull, are surprisingly close to
it, and are also quite stable. The energies of a few of
these stable clusters with NV =70,200,280,450,630 are also
shown in Fig. 1. For cages with N> 100 a face-dual
minimization run often gets trapped in local minima, al-
ways with a lower symmetry than the ground state. The
ground state of any given cage is always found to involve
only pentagonal and hexagonal faces with the maximum
possible separation between pentagons, in accord with
similar conclusions drawn from chemical arguments [27].
The lowest energy defect state of any given cage has the
same number of pentagons and hexagons as the ground
state, but with a different atomic arrangement that re-
sults in a slight deformation from the ground state struc-
ture. There are several topologically allowed ways of in-
serting heptagons into a {5+,3} tessellation, e.g., those
seen in the buckling pattern of a spherical honeycomb
structure [22]. For large cages (/N> 200) low energy
metastable states exist, involving one or more heptagons.
Some of the lowest energy candidates are (a) a pent-
agon-heptagon pair; (b) a pentagon-heptagon-pentagon
triplet with nonadjacent pentagons; (c) more complicated
morphologies involving a larger number of nonadjacent
pentagons and heptagons. In a low energy metastable
fullerene structure, however, a heptagon always appears
in the triplet morphology of the case (b) above. This
structural unit replaces an isolated pentagon of the
ground state structure, thereby automatically satisfying
the constraints of Euler’s equation: (No. penta-
gons) —(No. heptagons)=12. In large clusters (N
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>200) we find that the defect energy scales almost
linearly with the number of heptagons in the system.
This implies that the defects are approximately nonin-
teracting and that the effects of a heptagon insertion are
short ranged. The defect energy per heptagon is practi-
cally independent of the cage size and is about 0.5
eV/defect. Other kinds of more extended topological de-
fects can be artificially introduced and their energetics is
currently under investigation.

The convex hull of Fig. 1 is accurately fitted by the
curve

E(N) =Egraphene+4.6l64N —(0.5614+0.022InN) , )

where E graphenc = — 7.3768 is the energy per atom for the
infinite graphene layer [16] and all the units are in
eV/atom. The above fit is extremely accurate in the
range 200 < N <10000. [The asymptotic behavior of
E(N) was not considered.] Although Eq. (2) was only
fitted to the icosahedral cages, it turns out that cages of
lower symmetry are quite close in ground state energy to
the convex hull of Fig. 1. The fit given by Eq. (2) is thus
a very good approximation (within 0.2% for N > 200) to
the ground state energies of all large cages.

In order to address the issue of stability of onion struc-
tures it is necessary to compare energetics of an onion
with that of an isolated cage of equal size. Previous cal-
culations indicated that closed finite-sized tubules are
higher in energy than isolated cages [28]. Therefore, tu-
bular structures are not considered in this Letter, al-
though open tubes might become energetically important
at sizes well beyond the range considered in this Letter.
In order to estimate the critical size above which onions
could become energetically favorable, it is convenient to
calculate the quantity AE, defined, for a two-shell onion,
by

N(E(N|)+N,E(N>)

AE=E(N|+N;,)— , 3
E=EWN;+N3) NN, (3)

where NV, (V;) is the number of atoms in the inner
(outer) shell of an [N,/V,] onion and E (V) is the energy
per atom of a single cage of size NV (henceforth referred
to as E %), Physically AE corresonds to the fragmenta-
tion energy per atom of a single cage of size (V;+N,)
into two smaller cages of sizes Ny and V,. The effective
vdW attraction per atom of the [N {,/V,] onion is given by

N1E(N1)+N,E(N,)

EVdWN,N =E°ni°nN,N —_
[Vy,NV,] [N,N,] NN,

]

(4)

where E°""[V|,N,] is the total energy per atom of the
[N1,N] onion. Equations (3) and (4) can be generalized
to the case of more than two shells in a straightforward
fashion. The crossover in stability from single cages to
onions occurs when the energy loss due to smaller radii of
curvature in an onion (as compared to a single cage with
the same total number of atoms) is overcompensated by a
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TABLE I. A comparison of the ground state energies of a few icosahedral onions with those
of single cages of equal size. The units are eV/atom.

Onion size [ onion

E cage

AE

E vdW

[60,240]
[240,540]
[540,960]

[960,15001]
[2160,2940]
[6000,7260]
[60,240,540]

[60,240,540,9601]

—7.2260
—7.3069
—17.3373
—7.3520
—7.3653
—17.3739
—7.2893
—17.3199

—17.2852
—7.3355
—7.3535
—17.3618
—17.3691
—17.3737
—7.3381
—7.3569

—0.0622
—=0.0314
—0.0190
—0.0127
—0.0068
—0.0029
—0.0525
—0.0410

—0.0030
—0.0028
—0.0028
—0.0029
—0.0030
—0.0031
—0.0037
—0.0040

gain in energy due to the attractive vdW force between
the onion layers. This happens when the fragmentation
energy AE is smaller in magnitude than the vdW energy
EYI¥_ Our results for E°Mon Ecage AE and EYIW for a
few onions, using the vdW interaction of Ref. [23], are
displayed in Table 1. Figure 2 shows AE and E“¢W
for the two-layer icosahedral onions [NV;=60p 2 N,
=60(p+1)2] [which correspond to the series b =c =p in
Eq. (1)] as a function of N=/N,. From the results of
Table I it is clear that AE decreases monotonically with
an increase in /N for the two-shell onions. The vdW en-
ergy E YW varies little, saturating slowly to about 0.0031
eV/atom. The crossover to onions occurs therefore when
the AE vs N curve passes through this nearly constant
value of E¥4W. This happens at N ~5800 as indicated in
Fig. 2 and supported by the explicit results of Table I.
Calculations repeated with the vdW interaction of Ref.
[24] yield very similar results, with a slightly lower vdW
saturation energy (0.0028 eV/atom) and a slightly higher
crossover size (VN ~6200). It can also be seen from Table
I that the energy difference per atom E °Mon— E cage
=E"YWY — AE is larger in onions with three or more shells
than in those with two shells. Thus, with increasing clus-
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FIG. 2. Fragmentation energy AE and van der Waals energy
EYY (defined in the text) for two-shell icosahedral onions as
functions of the inner shell size. The crossover occurs near
N =5800.
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FIG. 3.

Atomic density plot of the four-layer onion

[60,240,540,960] projected onto a two-dimensional plane that is
normal to (a) a fivefold symmetry axis and (b) a threefold sym-
metry axis. This plot is expected to simulate experimental
TEM images.
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ter size, one should expect a crossover first to two-shell
onions, and then to the multishell ones. Onions with
shells other than of icosahedral symmetry have also been
examined for onion sizes smaller than 1000 atoms. The

- energetically most stable structure for an onion of a given
size is difficult to obtain in this case because there is no
clear rule to determine the sizes of the individual shells.
However, our calculations on a large number of onions
unequivocally establish the stability of single cages over
onions in this size regime. This is also true for the ex-
perimentally observed [14] onions [50,230] and [70,
290,680].

Finally, it is interesting to consider the shapes of onions
in their ground states. Figures 3(a) and 3(b) display
two-dimensional projections of the atomic density for the
four-shell onion [60,240,540,960], viewed from two or-
thogonal directions. In Fig. 3(a) the atomic density is
projected onto a plane normal to a fivefold symmetry
axis, while Fig. 3(b) corresponds to the projection normal
to a threefold symmetry axis. These pictures are very
similar to the recently simulated TEM images of icosahe-
dra [29]. While the onion looks quite circular when
viewed from the fivefold axis, much like the experimental
TEM images of Ref. [13], it appears polyhedral when
viewed from a more general direction.

In summary, carbon onions are energetically favorable
over single fullerene cages only above a certain critical
size N ~6000. The existence of onions smaller than this
critical size [14] should be due to specific nucleation
mechanisms prevalent during the experiment. The
ground state structures of large single cages as well as
onions (N >200) are always polyhedral, consisting of
pentagons and hexagons only. However, the TEM image
of moderately large onions (outer-shell size < 2000)
might consist of concentric circular rings if viewed from
certain high symmetry directions. The most stable single
cage fullerenes are found to be of icosahedral symmetry,
although large cages of lower symmetry are only slightly
less stable and should thus be observable.

This work was supported by the Office of Naval
Research, Grant No. N00014-91-J-1516. Some of the
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percomputing Center.
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FIG. 3. Atomic density plot of the four-layer onion
[60,240,540,960] projected onto a two-dimensional plane that is
normal to (a) a fivefold symmetry axis and (b) a threefold sym-
metry axis. This plot is expected to simulate experimental
TEM images.



